Information About Drinking Water Quality

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, that can be naturally occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products of industrial processes and petroleum production and can also come from gas stations, urban stormwater runoff, agricultural applications, and septic systems.
- Radioactive contaminants, that can be naturally occurring or the result of oil and gas production and mining activities.

An assessment of the drinking water sources for Scotts Valley Water District was completed in September 2001 and January 2011. The sources are considered most vulnerable to the following activities associated with contaminants detected in the water supply: drycleaning, gasoline storage and distribution, and manufacturing. In addition, the sources are considered most vulnerable to these activities: abandoned water and monitoring wells, septic systems, transportation corridors, commercial parking lots, and sewer collection systems. A copy of the complete assessment is available at the District Office at 2 Civic Center Drive, Scotts Valley or by e-mail at contact@svwd.org.

Water Quality Regulations

In order to ensure that tap water is safe to drink, the U.S. Environmental Protection Agency (USEPA) and the State Water Resources Control Board (State Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

When to Seek Health Care Advice

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised populations such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/ Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).
Scotts Valley Water District
Results of 2014 Drinking Water Quality Tests

The tables below list all of the drinking water contaminants and other constituents detected between January 1 and December 31, 2014. Secondary Standards in the table refer to aesthetic aspects of water. In general, water quality remained constant or improved in 2014 and meets all State and Federal standards.

Scotts Valley Water District Treated Water

<table>
<thead>
<tr>
<th>CONTAMINANT</th>
<th>MCL or MRDL</th>
<th>PHG or MCLG</th>
<th>RANGE</th>
<th>AVERAGE</th>
<th>VIOLATION</th>
<th>SOURCE OF CONTAMINATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic (PPB)</td>
<td>10</td>
<td>0.004</td>
<td>ND to 5.0</td>
<td>1.5</td>
<td>NO</td>
<td>Naturally occurring minerals.</td>
</tr>
<tr>
<td>Fluoride (F) (PPM)</td>
<td>2</td>
<td>0.09 to 0.66</td>
<td>ND to 0.28</td>
<td>NO</td>
<td>Natural occurring minerals.</td>
<td></td>
</tr>
<tr>
<td>Gross alpha particle activity (μCi/L)</td>
<td>15</td>
<td>NONE</td>
<td>ND to 3.8</td>
<td>0.29</td>
<td>NO</td>
<td>Naturally occurring minerals.</td>
</tr>
</tbody>
</table>

Disinfection By-Products and Disinfectant Residual

- Total Trihalomethanes (PFH): 80, NONE, ND to 59, 14.0, NO, By-product of drinking water chlorination.
- Haloacetic Acids (HAAS) (PFH): 60, NONE, ND to 5.1, 3.5, NO, By-product of drinking water chlorination.
- Chlorine (PFH): 4, 4, 0.19 to 1.46, 0.7, NO, Drinking water disinfectant added for treatment.

Lead and Copper

<table>
<thead>
<tr>
<th>ACTION LEVEL</th>
<th>PHG SAMPLED</th>
<th># OF SITES PERCENTILE</th>
<th>90TH PERCENTILE</th>
<th>SOURCE OF CONTAMINATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead (total) (PPM)</td>
<td>15</td>
<td>0</td>
<td>19</td>
<td>2.0</td>
</tr>
<tr>
<td>Copper (total) (PPM)</td>
<td>1.3</td>
<td>0.3</td>
<td>19</td>
<td>0.22</td>
</tr>
</tbody>
</table>

Regulated Contaminants with Secondary MCLs

<table>
<thead>
<tr>
<th>CONTAMINANT</th>
<th>SECONDARY MCL</th>
<th>RANGE</th>
<th>AVERAGE</th>
<th>SOURCE OF CONTAMINATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloride (PPM)</td>
<td>500</td>
<td>23 to 86</td>
<td>41</td>
<td>Naturally occurring minerals.</td>
</tr>
<tr>
<td>Iron (Fe) (PPB)</td>
<td>300</td>
<td>ND to 160</td>
<td>80</td>
<td>Naturally occurring minerals.</td>
</tr>
<tr>
<td>Manganese (Mn) (PPB)</td>
<td>50</td>
<td>ND to 26</td>
<td>11.75</td>
<td>Naturally occurring minerals.</td>
</tr>
<tr>
<td>Odor Threshold @ 60°C (TON)</td>
<td>3</td>
<td>ND to 2</td>
<td>1.48</td>
<td>Naturally occurring minerals.</td>
</tr>
<tr>
<td>Specific Conductance (E.C.) (micromhos per cm)</td>
<td>1,600</td>
<td>390 to 960</td>
<td>699</td>
<td>Naturally occurring substances that form ions in water.</td>
</tr>
<tr>
<td>Sulfate (SO4) (PFH)</td>
<td>500</td>
<td>72 to 240</td>
<td>123</td>
<td>Naturally occurring minerals.</td>
</tr>
<tr>
<td>Turbidity (NTU)</td>
<td>5</td>
<td>ND to 0.89</td>
<td>0.15</td>
<td>Naturally occurring minerals.</td>
</tr>
<tr>
<td>Total Dissolved Solids (PPM)</td>
<td>1,000</td>
<td>250 to 650</td>
<td>452</td>
<td>Naturally occurring minerals.</td>
</tr>
</tbody>
</table>

pH (Units)

- 7.6 to 8.5
- 7.95

Sodium (PPM)

- 35 to 100
- 60.7

Total Hardness2 as CaCO3 (PPM)

- 91 to 280
- 209.4

Calcium (Ca) (PPM)

- 29 to 85
- 59.3

Carbonate (as CO3) (PPM)

- ND to 5.2
- 4.7

Magnesium (Mg) (PPM)

- 4.5 to 32
- 15.5

Potassium (K) (PPM)

- 1.5 to 3.1
- 2.2

Total Alkalinity (PPM)

- 62 to 300
- 157

Orthophosphate [as PO4] (PFH)

- ND to 1.8
- 1

Carbon Dioxide (PPM)

- ND to 4.9
- 3.5

Definitions Used in This Chart:

- **Grains per Gallon:** A unit of hardness where 17.1 parts per million equals 1 grain per gallon.
- **Turbidity:** A physical characteristic of water that makes the water appear cloudy. The condition is caused by the presence of suspended matter. We monitor it because it is a good indicator of the effectiveness of our filtration system.
- **MCL:** Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency.
- **MRDL:** Maximum Residual Disinfectant Level. The highest level of a contaminant that is allowed in drinking water. MRDLs are set to protect the odor, taste, and appearance of drinking water.
- **Picocuries per liter:** A measure of radioactivity.
- **pCi/L:** Picocuries per liter is a measure of radioactivity.
- **Ppb:** Parts per billion or micrograms per liter. 1 PPB equals 0.001 PPM and is equivalent to about one drop in 17,000 gallons of water.
- **PPM:** Parts per million or milligrams per liter. 1 PPM equals 1,000 PPB and is equivalent to about one drop in 17 gallons of water.
- **PHG:** Public Health Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.
- **TON:** Threshold Odor Number: The unit of odor.

Notes

1. Water samples for the data reported above are drawn from both the treatment plants and the distribution system.
2. Our treatment plants remove a combination of iron, manganese, arsenic, sulfur, and reduced constituents inherent to the Scotts Valley groundwater supply. Where needed volatile organic compounds are also removed.
3. The State allows us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently.

Footnotes

1, 2 All testing is from 2014, except for radiological constituents which were drawn from three treatment plants in September 2010 and 2011, and Lead and Copper rule samples were drawn from 20 customer taps in September 2014.
3 Average Total Hardness for 2014 was 12.2 grains per gallon.

Providing Our Customers With Safe, Reliable, High-Quality Water is Our Top Priority.