

**SCOTTS VALLEY
WATER DISTRICT**

AGENDA PACKET

REGULAR BOARD MEETING

2/12/26 at 6:00 p.m.

Santa Margarita Community Room
2 Civic Center Drive, Scotts Valley, California

This meeting is conducted in a hybrid setting.

Public participation is encouraged. Members of the public may attend in person or remotely through this link <https://us06web.zoom.us/j/86757235890> or by phone: 253-215-8782 Meeting ID: 867 5723 5890.

The public has opportunities to make comments throughout the meeting:
to comment online, use the raise hand option, by phone press *9.

BOARD OF DIRECTORS

Ruth Stiles, President

Bill Ekwall, Vice President

Wade Leishman, Director

Chris Perri, Director

Danny Reber, Director

Dominic Osorio, Associate Director

Demitri Vavaroutsos, Associate Director

David McNair, General Manager

Water Industry Acronyms

AF – Acre Foot	RWMF – Regional Water Management Foundation
AFY – Acre Foot per Year	RFP – Request for Proposals
ACWA – Association of California Water Agencies	ROW – Right-of-way
ACWA JPIA – ACWA Joint Powers Insurance Authority	RWQCB – Regional Water Quality Control Board
AWWA – American Water Works Association	SCWD – Santa Cruz Water Department (City of)
BMP – Best Management Practices	SDWA – Safe Drinking Water Act
CCR – Consumer Confidence Report	SGMA – Sustainable Groundwater Management Act
CD – Certificate of Deposit	SLVWD – San Lorenzo Valley Water District
CEQA - California Environmental Quality Act	SMGWA – Santa Margarita Groundwater Agency
CSDA – California Special District Association	SqCWD – Soquel Creek Water District
DHS – Department of Health Services	SWRCB – State Water Resources Control Board
DWR – Department of Water Resources	TP – Treatment Plant
EIR – Environmental Impact Report	WY – Water Year
EPA – Environmental Protection Agency	
FY – Fiscal Year	
GASB – Governmental Accounting Standards Board	
IRWM – Integrated Regional Water Management	
JPA – Joint Powers Agreement	
LAIF – Local Agency Investment Fund	
LAFCO – Local Agency Formation Commission	
LID – Low Impact Development	
MCL – Maximum Containment Level	
MGD – Million Gallons per Day	
MGY – Million Gallons per Year	
MOU – Memorandum of Understanding	
O&M – Operations and Maintenance	
PERS – Public Employees Retirement System	
PHG – Public Health Goal	
PPB – Parts Per Billion	
PRV – Pressure Relief Valve	
PVC Pipe – Polyvinyl Chloride Pipe	

SCOTTS VALLEY WATER DISTRICT

BOARD OF DIRECTORS
PRESIDENT Ruth Stiles
VICE PRESIDENT Bill Ekwall
Wade Leishman
Chris Perri
Danny Reber
ASSOCIATE DIRECTORS
Dominic Osorio
Demitri Vavaroutsos
GENERAL MANAGER
David McNair

Board of Director

Regular Meeting

2/12/26 at 6:00 p.m.

Santa Margarita Community Room
2 Civic Center Drive, Scotts Valley, California

Agenda

This meeting is conducted in a hybrid setting. Public participation is encouraged, members of the public may attend in person, remotely through this link

<https://us06web.zoom.us/j/86757235890> or by phone: 253-215-8782 Meeting ID: 867 5723 5890. The public has opportunities to make comments throughout the meeting. To comment online, use the raise hand option, by phone press *9. If experiencing technological difficulties online, join the meeting via phone.

1. Convene

1.1. Call to Order and Roll Call

Director Perri is video/teleconferencing from 1018 N Corbin Ln, Spokane Valley, WA

1.2. Pledge of Allegiance and Reflection

1.3. Closed Session Report for Special Meeting 1/27/26 – Anticipated Litigation

1.4. Additions/Deletions to the Agenda

1.5. Oral Communications

2. Presentation

Communications and Community Outreach Report

Project Status Update

3. Administrative

Items are informational in nature and do not include an agenda report.

3.1. Committee and Other Agency Meeting Reports

Engineering & Water Resource Committee – 1/26/26

Finance & Personnel Committee 1/28/26

Executive & Public Affairs Committee – 1/28/26 (Cancelled)

Santa Margarita Groundwater Agency Board – None

4. Consent

Items are routine in nature, may include agenda reports and be approved by one motion.

4.1. Approval of Minutes – Regular Board Meeting 1/8/26

Recommendation: Approve the minutes of the 1/8/26 Regular Board Meeting.

4.2. Approval of Minutes – Special Board Meeting 1/27/26

Recommendation: Approve the minutes of the 1/27/26 Special Board Meeting.

4.3. Validated Water Loss Audit Report 2024

Recommendation: Receive the validated Water Loss Audit Report for 2024.

5. Public Hearings (None)

Items include an agenda report with recommendations, an oral staff report or presentation.

6. Business (None)

Items are complex in nature, considered individually, and each item includes an agenda report with a recommendation, and an oral staff report or presentation.

6.1. Water Supply Conditions

Recommendation: Receive information.

7. Staff Reports

7.1. Legal

District Counsel

7.2. Administrative

General Manager – oral

7.3. Finance

Finance Manager – oral

Financial Report 07.01.25 – 12.31.25

Quarterly Financial Report

7.4. Operations

Operations Report – oral

Production, Demand & Rainfall

8. Director's Reports

9. Written Correspondence

ACWA Regulation Round Up

Santa Cruz County Notice Re: Scotts Valley Town Center

10. Community Relations

January Newsletter

Scotts Valley Water District Board of Directors

Agenda – 2/12/26

Page 3

11. Closed Session (None)

11. Report on Closed Session and Additional Items (None)

12. Future Items

Surplus Vehicle

Proposed Projects Budget

14. Meetings and Event Calendar

Board Meetings

Committee Meetings

2/12/26

1/28/26 Finance and Personnel

3/12/26

1/26/26 Engineering and Water Resources

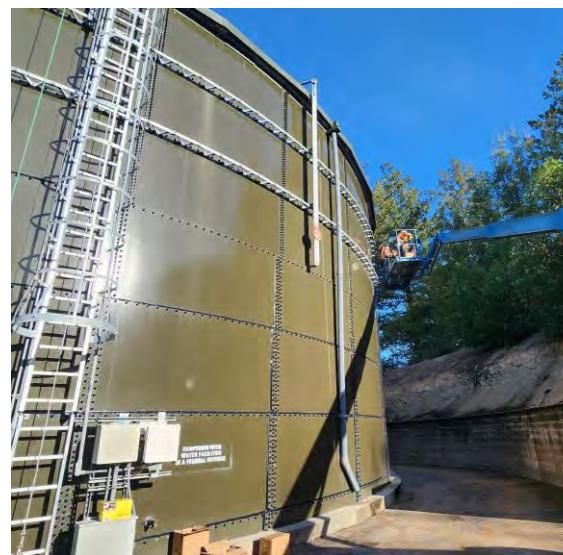
4/9/26

1/28/26 Executive and Public Affairs

Santa Margarita Groundwater Agency

Board Meeting 2/26/26

15. Events (None)

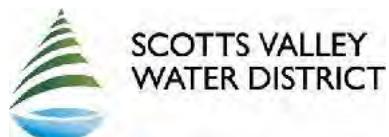

16. Adjourn

AVAILABILITY OF PUBLIC RECORDS PROVIDED TO THE BOARD OF DIRECTORS: THE DISTRICT MAKES ANY PUBLIC RECORD PROVIDED TO THE BOARD OF DIRECTORS AVAILABLE FOR PUBLIC REVIEW AT WWW.SVWD.ORG AND AT THE DISTRICT OFFICE DURING NORMAL BUSINESS HOURS AT THE SAME TIME IT IS PROVIDED TO THE BOARD OF DIRECTORS.

PUBLIC ACCESS – ACCOMMODATIONS UNDER THE ADA: PURSUANT TO TITLE II OF THE AMERICANS WITH DISABILITIES ACT OF 1990, THE DISTRICT REQUESTS THAT ANY PERSON IN NEED OF ANY TYPE OF SPECIAL EQUIPMENT, ASSISTANCE OR ACCOMMODATION(S) IN ORDER TO EFFECTIVELY COMMUNICATE AT THIS MEETING MAKE A REQUEST AT THE ABOVE ADDRESS OR BY CALLING (831) 438-2363 AT LEAST THREE (3) WORKING DAYS BEFORE THE MEETING TO ALLOW TIME TO MAKE ARRANGEMENTS.

COMMUNITY OUTREACH & COMMUNICATIONS

February 2026 Update

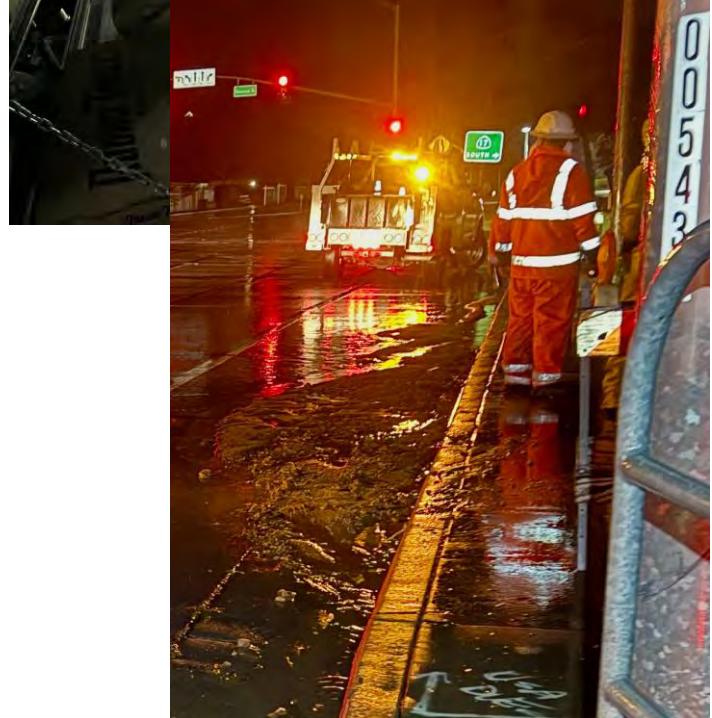

**APPLY TO BE A
JUNIOR ASSOCIATE
BOARD MEMBER**

To be eligible, applicants must:

- Live, work or attend school within the District service area
- Be 16 to 30 years old
- Have an interest in local government or civic service
- Be available to attend monthly board meetings
- Be willing to commit to a two-year term

Learn more and apply today:
www.svwd.org/junior

What follows is an update on activities in support of the goal to engage the community to increase visibility of District activities and advance public awareness on water matters.



Recruitment Support

- Created graphics and flyers to recruit Junior Board Members and Community Members for Committee positions, resulting in 4 applicants for each
- Created graphics and ad campaign for Assistant Administrative Analyst job opening, resulting in more than 35 applicants

Emergency Communications

- Provided after-hours on-call strategic communications support during water emergencies
- Informed and updated customers throughout the assessment and repair process

Sucinto Well Communications

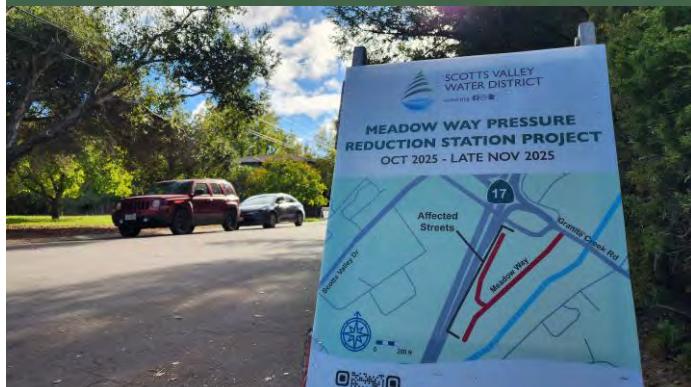
- Wrote and distributed press release announcing completion of Sucinto Well Project
- Promotion project completion on social media, newsletter and website

Scotts Valley Water - Santa Cruz Water Intertie Project

Provided ongoing outreach support for the Intertie Project, including social media posts about traffic delays that impacted residents

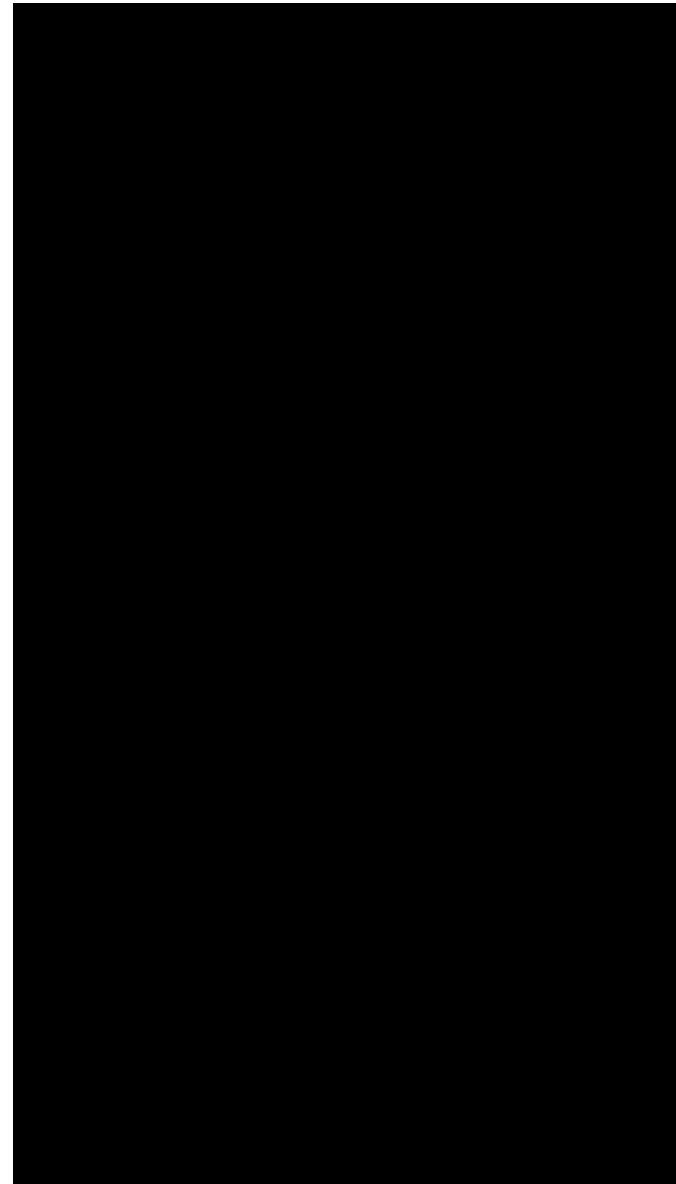
Glenwood and Southwood Tanks Resealing Project

- Shared updates and progress on the project
- Captured videos and photos to share on social media


Sequoia Tank Roof Repainting Project

Shared photos and information
about roof repainting project
of Sequoia Tank

MEADOW WAY PRESSURE REDUCTION STATION PROJECT
LATE OCTOBER – END OF NOVEMBER 2025



Meadow Way Pressure Reduction Station Project

- Created mailers and signage to share information about the project
- Captured videos and photos to share on social media

La Cuesta Drive Pipeline Project

Updated website about
project completion and
shared project information
through social media and
newsletter

Grace Way Well

Communications

- Provided strategic communications support
- Created social posts sharing progress
- Edited and posted timelapse videos to share compelling updates

Spotlight on District Employees

Continued to showcase work
done by SVWD Operations
team members

Website Support

- Posted District news to the website, including press releases and newsletters
- Completed regular website updates, auditing content to ensure information shared is accurate and ensuring ADA-compliant

SOCIAL MEDIA

July 1, 2025 – December 31, 2025

Facebook

- Posts: 79
- Reach: 17,973
- Engagement: 1,318
- Total followers: 969

*The number of unique people who have seen a piece of content on a social media platform

** Likes, Comments, Shares, Link Clicks, etc

SOCIAL MEDIA

July 1, 2025 – December 31, 2025

Instagram

- Posts: 80
- Reach: 5,155*
- Engagement: 418**
- Total followers: 693

*The number of unique people who have seen a piece of content on a social media platform

** Likes, Comments, Shares, Link Clicks, etc

About Facebook Followers

Audience

Demograph...

Trends

Potential audience

Followers 1

Lifetime

969

Age & gender

1

20%

15%

10%

5%

0%

18-24

25-34

35-44

45-54

55-64

65+

Women

61.8%

Men

38.2%

Top cities

Scotts Valley, CA

Santa Cruz, CA

San Jose, CA

Soquel, CA

Ben Lomond, CA

Felton, CA

Boulder Creek, CA

Capitola, CA

Watsonville, CA

Aptos, CA

Watsonville, CA

Top countries

United States

Mexico

0.7%

Sweden

0.3%

India

0.2%

Philippines

0.2%

Canada

0.1%

Morocco

0.1%

Romania

0.1%

Trinidad and Tobago

0.1%

United Kingdom

0.1%

About Instagram Followers

Audience

Demograph...

Trends

Potential audience

Followers

Lifetime

693

Age & gender

20%

15%

10%

5%

0%

20%

15%

10%

5%

0%

18-24

10%

5%

0%

25-34

15%

10%

5%

0%

35-44

10%

5%

0%

45-54

10%

5%

0%

55-64

10%

5%

0%

65+

Women

55.8%

Men

44.2%

Top cities

Scotts Valley, CA

Top countries

United States

22.9%

90.5%

Santa Cruz, CA

China

0.9%

9.5%

India

0.7%

Capitola, CA

Iran

0.6%

Watsonville, CA

Canada

0.4%

3.5%

Australia

0.3%

San Jose, CA

Turkey

0.3%

2.9%

Mexico

0.3%

Felton, CA

Nigeria

0.3%

2.6%

Poland

0.1%

Boulder Creek, CA

2.5%

Soquel, CA

2.3%

Salinas, CA

2.3%

Ben Lomond, CA

2.2%

Email Newsletter

The District's monthly newsletter has an average open rate of more than 55%, markedly higher than the industry average of 36%

Miller Maxfield creates and distributes the newsletter in collaboration with District staff.

July 2025	56.4%
August 2025	57%
September 2025	57%
October 2025	55.4%
November 2025	53%
December 2025	55.2%

Upcoming and Ongoing Activities

Infrastructure Projects

- Continued support of Grace Way Well Project
- Additional updates on the SVWD-SCWD Intertie Project

General Communications

- Monthly Ops meeting and additional meetings with staff as needed
- Any additional hiring support

Questions and Answers

SCOTTS VALLEY
WATER DISTRICT

FY 2026 Capital Improvement
Program: Mid Year Update

FY 2026 Projects:

Mains

Main Replacement Program

Intertie 1

Treatment Plants

El Pueblo WTP Improvements

Well 10A WTP Improvements

VFD Installation at Orchard Run WTP

Tanks

Bethany Tank Rehabilitation

Sequoia Tank Roof Recoat

Potable: Resealing Seams and Safety Upgrades on Glenwood and Southwood Tank [\(New for FY26\)](#)

Recycled: Resealing Seams and Safety Upgrades on Recycled Water Tank [\(New for FY26\)](#)

Glenwood Tank Landslide Evaluation and Repair

Pump Stations

Monte Fiore Pump Station Rehab

Wells

Grace Way Well

Sucinto Well

Distribution System

System Wide Pressure Reduction Program

Distribution system improvements in Montevale

Meters

Automated Metering Infrastructure

Meter Replacement Program

Technology

SCADA Improvements- Teledesign Radio and Kingfisher RTU Replacements

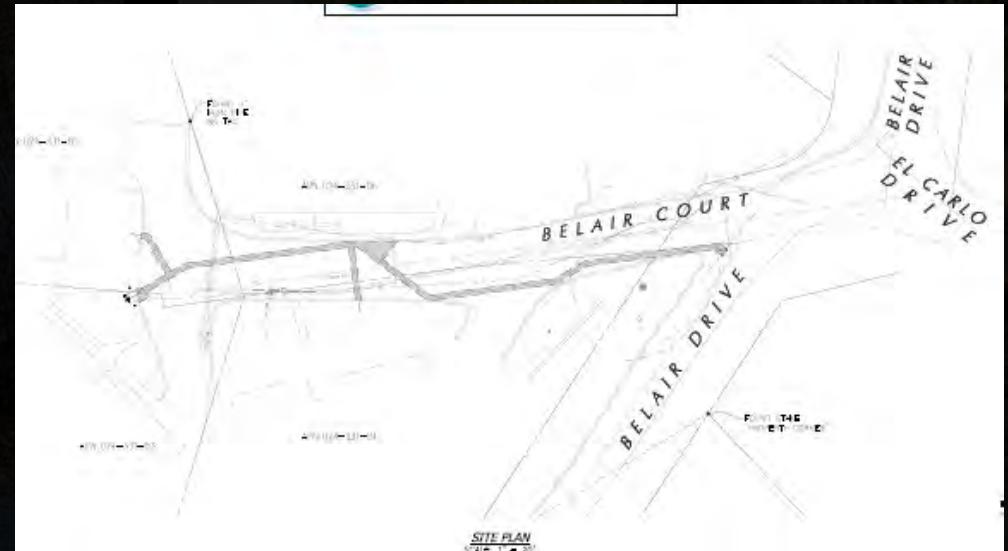
Fleet

Vehicle Replacement Program

Specialized Operations Equipment

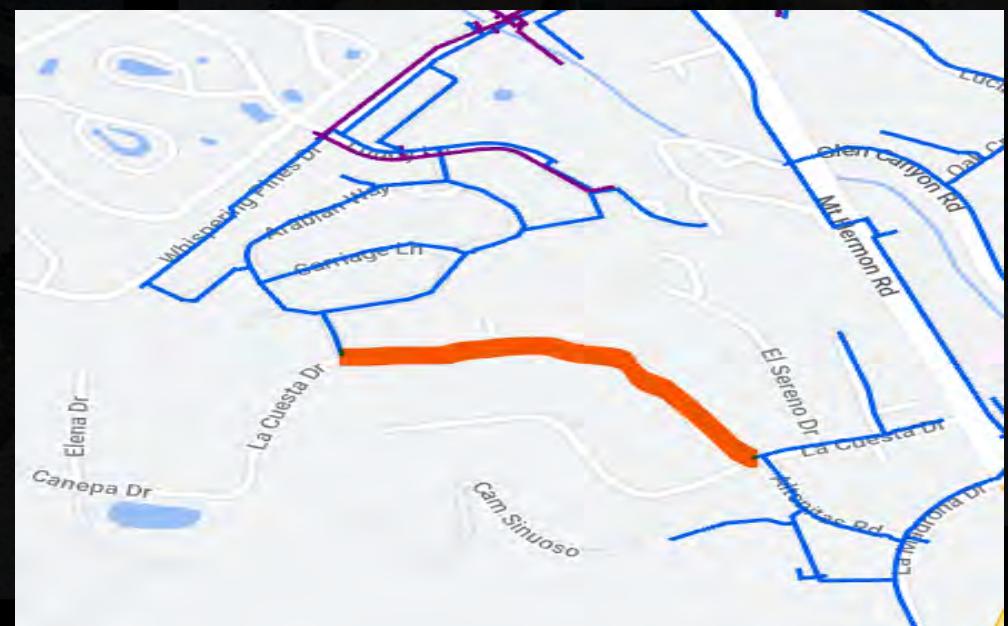
Buildings

Administrative Building Improvements


Corp Yard Improvements

Solar Installation

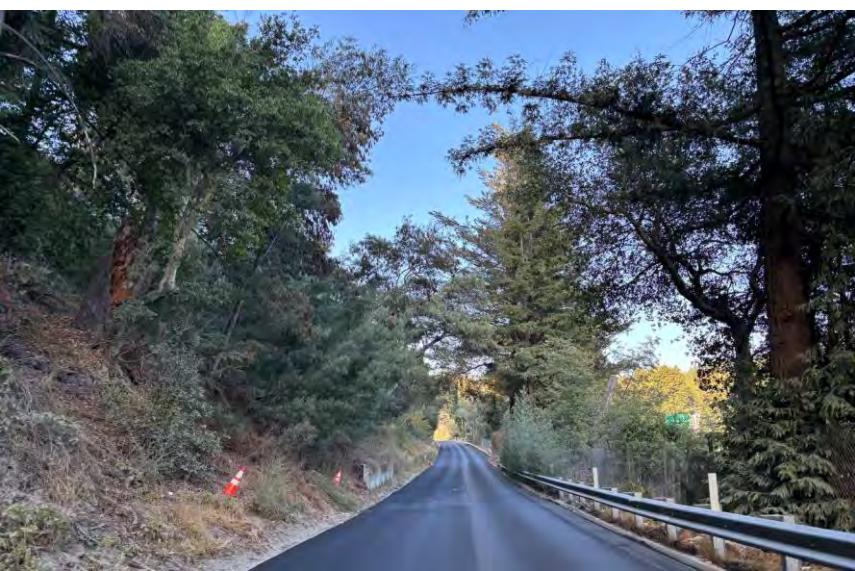
Distribution System Projects: Mains


Belair Ct Main Replacement:

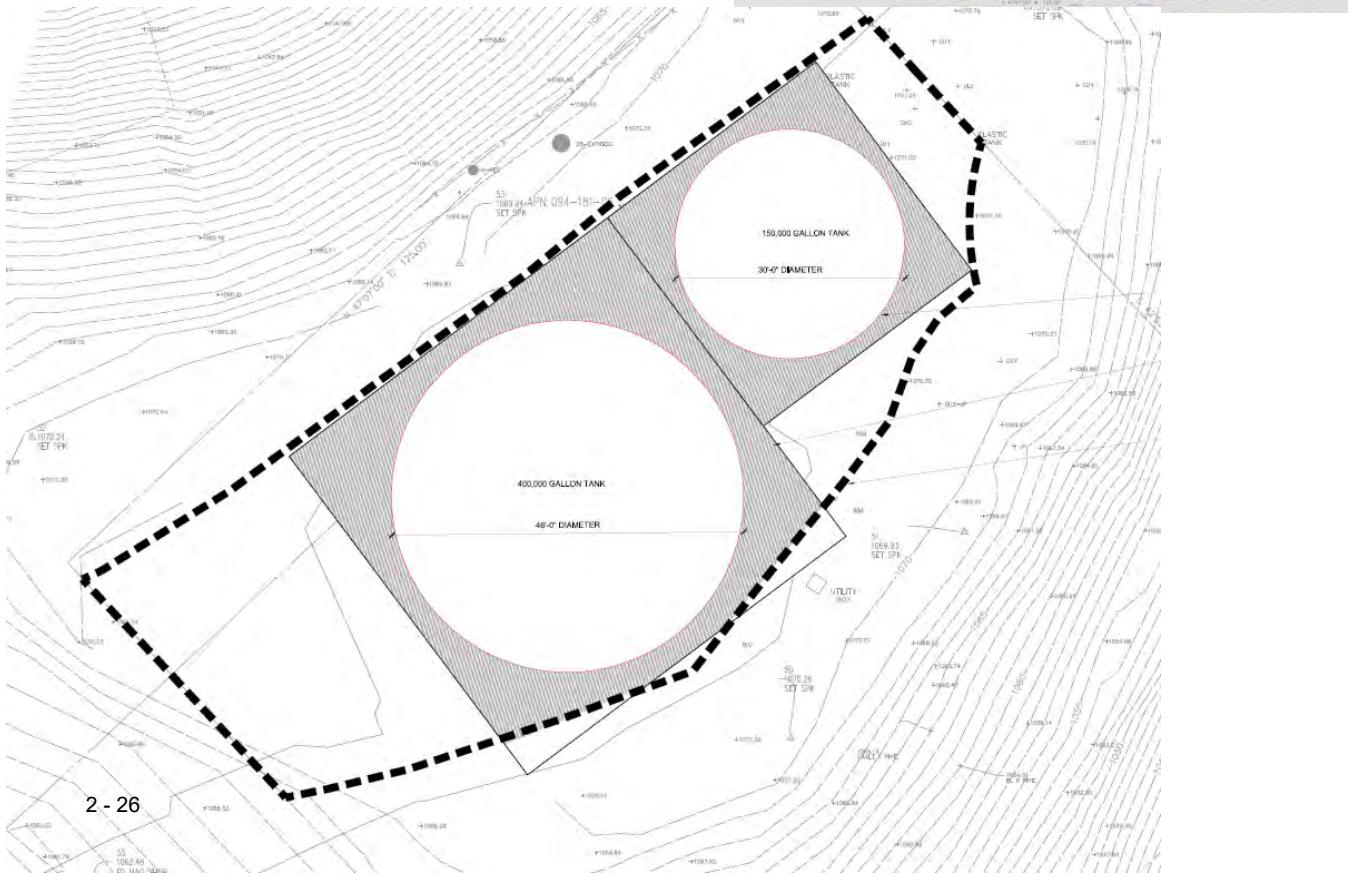
- Less than 300 ft of 2" Galvanized main replaced with 6" C900 PVC.
- Design and Engineering completed in October 2023, project completed in July 2025.

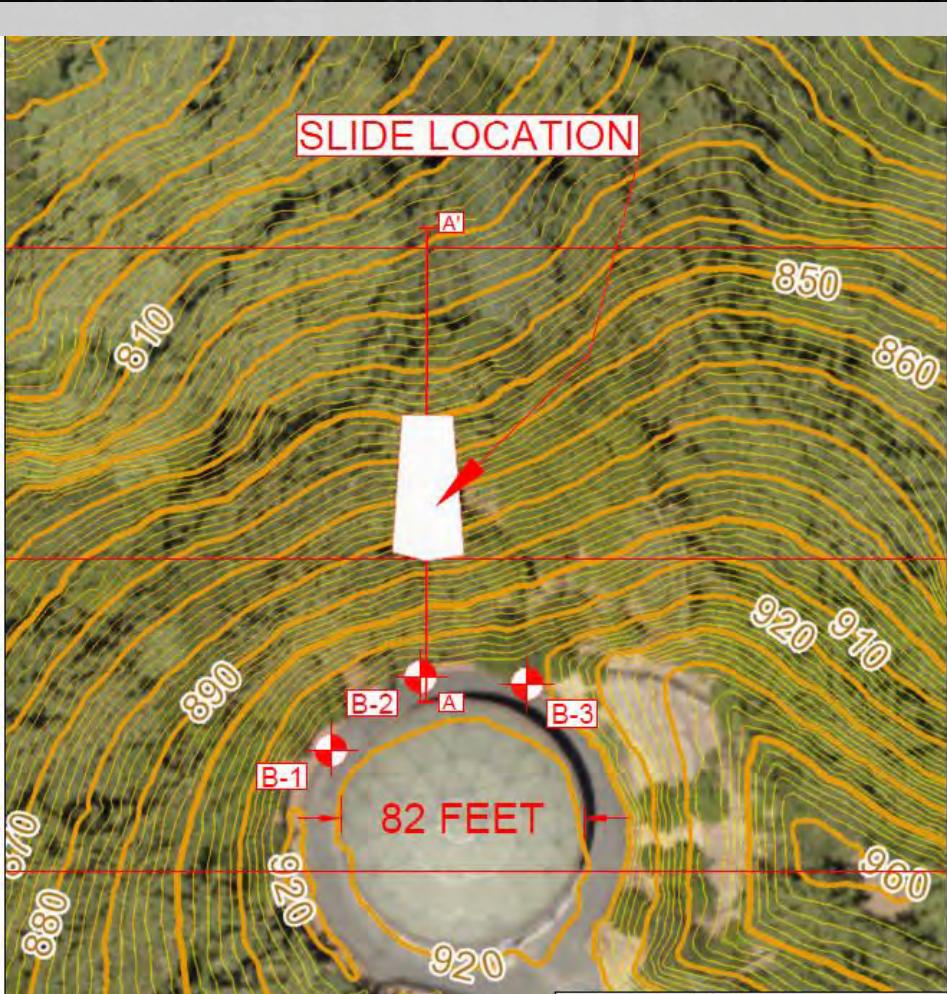
La Cuesta New Main Addition:

- Approximately 1,450 LF of 8" main going through La Cuesta Dr. in Manana Woods subdivision.
- Design and Engineering completed in 2024, project completed in October 2025.


Meadow Way Pilot PRV Station:

- Designed in January 2025, project completed in January 2026


Intertie 1- SVWD/SCWD Intertie


- Installation of 9,200 LF of 12" pipeline
- Construction of Bi-Directional pump station (1MGD Capability)
- 100% Design completed in January 2024
- Construction began in April 2025
- La Madrona Dr pipeline completed in Sept. 2025, Firehouse Ln portion of pipeline completed in November 2025.
- Pump station construction underway on La Madrona Dr.
- Grant coverage of \$6.2M

Tanks: Bethany Tank

- Rehabilitation Specialist conducted a conditions assessment in Spring 2023 while tank was drained. Conditions assessment concluded that the existing tank had defects in structural condition, coatings, and roof structure that need to be addressed
- Rehabilitation Specialist and produced an Alternatives Analysis in December 2023. This included the relative costs to rehabilitate, relocate or replace Bethany Tank.
- Geotechnical evaluation of the site has been progressing consisting of a team involving District staff, Pacific Crest and MME was completed in Fall 2025.
- RFP for Design of replacement tanks published early 2026.

Tanks: Glenwood Tank

- A landslide occurred in the property below Glenwood tank during the federally declared winter rainstorms disaster in January of 2023.
- A geotechnical assessment performed on the tank site perimeter conducted in Spring of 2023 determined that the tank site needed a secant pile perimeter foundation installed to stabilize the tank foundation.
- Design of site drainage improvements and pinpile foundation wall were completed in September 2025.
- SVWD applied for EPA Midsize and Large Drinking Water System Infrastructure grant funding to complete this project in October 2025.

Sequoia Tank Roof Recoat and Vent Modification

- Corrosion noted on the roof of Sequoia Tank
- DDW noted in last sanitary survey that tank vents need to be replaced or retrofitted to have vent screens downturned.
- SVWD contracted with Schaaf and Wheeler engineering to complete design
- Design was completed in Spring of 2025.
Resource Development Company, Inc selected as the contractor, coating was completed in November 2025

Tanks: Glenwood Tank,
Southwood Tank and Recycled
Water Tank Resealing Exterior
Seams and Safety Upgrades:
(Completed January 2026)

Pump Stations: Monte Fiore Booster Station Rehabilitation

-Pump station provides sustained pressure to the Monte Fiore subdivision. Originally constructed in 1999.

-Current Pump Station does not have a roof and is exposed to the elements. Equipment onsite has become outdated, worn, and difficult to repair: Control systems are antiquated. Pump suction lines are undersized. Welded steel pipes and fittings periodically spring leaks and are difficult to access underground.

-In FY 24, Kennedy Jenks Conducted an Upgrade Alternatives Analysis of the Monte Fiore Booster Station. This analysis included a benefit/cost analysis of rehabilitating the existing station or constructing a replacement booster station at a nearby undeveloped parcel.

-December 2025, booster #2 pump and motor was upgraded along with upgrade of motor controls by in-house staff.

Wells: Sucinto Well

Current Progress:

- Well programming completed in Fall 2025.
- Approval to place well into water system granted by DDW in October 2025.
- Generator, fuel tank, and transfer switch delivered October 2025.

Wells: Grace Way Well

Current Progress:

- Well was constructed in Spring 2025.
- Pedestal poured and well equipped with pump, motor, and column in September 2025.
- Site improvements underway, including Fencing, Motor Control Center building, connection to the raw water main, connection to storm drain, site paving, installation of landscape features. Estimated completion date March 2026.

SCADA Improvements

Project highlights:

-Replacing obsolete Teledesign Radios and Kingfisher Remote Terminal Units (RTU's) with cellular based GE Orbit Radios and Allen Bradley RTU's.

Progress:

-Pilot Project completed in April 2024 at Hacienda Booster.

-In FY25: Installation has been completed at 2 Civic Center Dr (front end), Fontenay Tank, Crescent Booster Station, ORWTP, Southwood Tank

-In FY 26: Hardware for 5 sites has been purchased; Sucinto Well programming completed in Oct. 2025

Fleet:

-Wachs Valve Turning Machine on F550 Chassis placed into service in July 2025

Two ZEV's added to the fleet:

-Purchased F-150 Lightning Truck to replace an F250.

-Purchased Chevy Blazer to replace Dodge Journey as office pool vehicle.

SCOTTS VALLEY WATER DISTRICT

svwd.org svwater

Engineering and Water Resources Committee

District Conference Room

2 Civic Center Drive, Scotts Valley, California

1/26/26 at 4:00 p.m.

Meeting Report

1. Convene

The meeting convened at 4:00 p.m. in the Conference Room. It was conducted in a hybrid format.

Present: Committee Members Ekwall, Perri, Hunt and Jager

Staff: General Manager McNair, Operations Manager Gillespie and Executive Assistant/Board Clerk Jensen

Guests: Ruth

2. Oral Communications

None.

3. Business Items

4. Discussion Items

4.1. Meeting Schedule and Objectives

Executive Assistant/Board Clerk Jensen reviewed the stated objectives of the committee and the current meeting schedule. Members discussed date and time that worked going forward and decided on the 4th Monday of each month at 2 PM.

4.2. CIP Update

Operations Manager Gillespie reviewed recently completed and in progress projects. The Committee discussed.

4.3. Scotts Valley Drive Sink Hole Update

General Manager McNair provided an update on the sink hole on Scotts Valley Drive.

5. District Updates

None.

6. Committee Member Reports

None.

7. Future Agenda Items

Urban Water Management Plan Update

8. Adjourn

The meeting adjourned at 4:47 p.m.

SCOTTS VALLEY WATER DISTRICT

svwd.org svwater

Finance and Personnel Committee
District Conference Room
2 Civic Center Drive, Scotts Valley, California
1/28/26 4:00 p.m.
Meeting Report

1. Convene

The meeting convened at 4:01 p.m. in the District Conference Room. It was conducted in a hybrid setting.

Present: Committee Members Leishman, Stiles, and Flint

Staff: General Manager McNair, Customer Service & Finance Manager Dillon, and Executive Assistant/Board Clerk Jensen

Absent: Committee Member Corstorphine

2. Oral Communications

None.

3. Action Items

4. Discussion Items

4.1. Meeting Schedule and Objectives

Executive Assistant / Board Clerk Jensen reviewed the objectives and responsibilities of the committee. The committee discussed the current meeting schedule and decided to move the time of future meetings to 4 PM. The meeting will continue to be held on the 4th Wednesday of each month.

4.2. Financials 07.01.25 – 12.31.25

Finance & Customer Service Manager Dillon presented the financials.

4.3. Budget Calendar

Dillon provided an overview of the budget process and calendar.

5. District Updates

General Manager McNair provided a rainfall totals update and grants received for the two new electric vehicles.

6. Reports or Information from Committee Members

None.

7. Future Agenda Items

New Employment Laws

8. Adjourn

The meeting adjourned at 5:10 p.m. 3.1 - 2

SCOTTS VALLEY WATER DISTRICT

svwd.org svwater

Executive and Public Affairs Committee
District Conference Room
2 Civic Center Drive, Scotts Valley, California
1/28/26 12:00 p.m.
Meeting Report

Canceled

Board of Directors

Regular Meeting

1/8/26 at 6:00 p.m.

Santa Margarita Community Room

2 Civic Center Drive, Scotts Valley, California

Minutes

1. Convene

1.1. Call to Order and Roll Call

President Stiles called the meeting to order at 6:00 p.m. in the Santa Margarita Community Room. The meeting was conducted in a hybrid setting.

Directors

Bill Ekwall

Wade Leishman

Ruth Stiles

Chris Perri

Staff

Terry Rein, Legal Counsel

Nate Gillespie, Operations Manager

John Dillon, Finance & Customer Service Manager

David McNair, General Manager

Rahni Jensen, Executive Assistant/Board Clerk

Guests

Bill Jager

Jonathan Flint

Domonic Osorio (Remote)

Jarden Solmonsen

Suzy Hunt

Demitri Vavaroutsos

Absent

Danny Reber

1.2. Pledge of Allegiance and Reflection

Director Perri led the pledge, and Director Leishman led the reflection.

1.3. Closed Session Report

None.

1.4. Additions/Deletions to the Agenda

Business Items 6.1 and 6.3 will be presented at the start of the meeting in the order of 6.1 then 6.3. Meeting will resume regular order with item 3.1.

1.5. Oral Communications

None.

2. Presentation (None)

3. Administrative

Items are informational in nature and do not include an agenda report.

3.1. Committee and Other Agency Meeting Reports

Scotts Valley Water District Board of Directors

Minutes – 1/8/26

Page 2

Engineering & Water Resource Committee (None)

Finance & Personnel Committee 12/17/25

Nothing to add to the written report.

Executive & Public Affairs Committee (None)

Santa Margarita Groundwater Agency Board (None)

3.2. Committee Appointments

Engineering and Water Resources

Chris Perri, Bill Ekwall 1st Alternate: Ruth Stiles, 2nd Alternate: Wade Leishman, 3rd Alternate: Danny Reber.

Executive and Public Affairs

Ruth Stiles, Bill Ekwall, 1st Alternate: Danny Reber

Finance and Personnel

Ruth Stiles, Wade Leishman, 1st Alternate: Bill Ekwall, 2nd Alternate: Danny Reber, 3rd Alternate: Chris Perri.

Interagency

Danny Reber, Alternate: Chris Perri

Santa Margarita Groundwater Agency (SMGWA) Board

Chris Perri, Wade Leishman, Alternate: Ruth Stiles

4. Consent

Items are routine in nature, may include agenda reports and be approved by one motion.

4.1. Approval of Minutes – Regular Board Meeting 12/11/25

Approved the minutes of the 12/11/25 Regular Board Meeting

MOTION Leishman/Ekwall, carried to approve consent agenda by unanimous voice vote, Reber absent.

5. Public Hearings (None)

Items include an agenda report with recommendation, an oral staff report or presentation.

6. Business (None)

Items are complex in nature, considered individually, and each item includes an agenda report with recommendation and an oral staff report or presentation.

6.1. Community Members on Committees

Scotts Valley Water District Board of Directors

Minutes – 1/8/26

Page 3

The Board conducted individual interviews with the following candidates: Jonathan Flint, Suzy Hunt, and Bill Jager. Colin Corstorphine was not present.

MOTION Leishman/Ekwall to appoint Colin Corstorphine Finance & Personnel Committee Community Member, Jonathan Flint as Finance & Personnel Committee Community Member, Suzy Hunt as Engineering & Water Resources Committee Community Member, Bill Jager as Engineering & Water Resources Committee Community Member by unanimous voice vote, Reber absent.

Item 6.3 was presented.

6.2. Junior Associate Board Members

Applicants Denger and Corstorphine removed their applications for consideration. The Board conducted individual interviews with the following candidates: Dominic Osorio and Demitri Vavaroutsos.

MOTION Leishman/Perri carried to appoint Dominic Osorio and Demitri Vavaroutsos as Associate Junior Board Members by unanimous voice vote, Reber absent.

6.3. Accept Comprehensive Financial Reports

General Manager McNair introduced the Annual Comprehensive Financial Report. Jaren Solmonsen with Nigro&Nigro presented the report. The Board discussed.

MOTION Perri/Ekwall carried to accept the Scotts Valley Water District Annual Comprehensive Financial Report for the Fiscal Year ending June 30, 2025 as presented by unanimous voice vote, Reber Absent.

7. Staff Reports

7.1. Legal

Rein discussed AB 399. Board discussed

7.2. Administrative

McNair provided an update on rainfall, two recent main line breaks, and encroachment permits. The Board discussed.

7.3. Finance

Financial Report 7/1/25 – 11/30/25

Dillon had nothing to add to the Financial Report, and provided information about the upcoming Rate Study.

7.4. Operations

Operations Report

Production, Demand & Rainfall

Scotts Valley Water District Board of Directors

Minutes – 1/8/26

Page 4

Gillespie provided updates regarding the main line break on Scotts Valley Drive, a power outage during the Holiday break, a main line leak on Lucinda during the Holiday break, as well as a separate main line leak on Lucinda on January 7th, Well 11b status, Grace Way Well, and Intertie-1.

8. Directors Reports

Director Perri noted recent participation at an ACWA Committee regarding rainfall collection.

Director Leishman noted the weather gauge is out of function on the SVWD website, staff confirmed knowledge of it's status.

9. Written Correspondence

JPIA Recognition Award

10. Community Relations

December Newsletter

11. Closed Session (None)

12. Report on Closed Session and Additional Items (None)

13. Future Items

14. Meetings and Event Calendar

Board Meetings

Committee Meetings

2/12/26

1/28/26 Finance & Personal

3/12/26

1/26/26 Engineering & Water Resource

4/9/26

1/28/26 Executive & Public Affairs

Santa Margarita Groundwater Agency

Board Meeting 1/29/26

15. Events (None)

16. Adjourn

The meeting adjourned at 7:48 p.m

Approved:

Attest:

Ruth Stiles, Board President

David McNair, Board Secretary

Board of Directors

Special Meeting

1/27/26 at 7:00 p.m.

Santa Margarita Community Room
2 Civic Center Drive, Scotts Valley, California

Minutes

1. Convene

1.1. Call to Order and Roll Call

President Stiles called the meeting to order at 7:00 p.m. in the Santa Margarita Community Room.

Directors

Bill Ekwall

Danny Reber

Ruth Stiles

Chris Perri

Staff

Terry Rein, Legal Counsel

Nate Gillespie, Operations Manager

David McNair, General Manager

Recused

Wade Leishman

2. Business

Items are complex in nature, considered individually, and each item includes an agenda report with recommendation and an oral staff report or presentation.

The meeting entered closed session at 7:02 pm.

2.1. Conference with Legal Counsel – Anticipated Litigation

The Board discussed with legal counsel anticipated litigation in relation to the sinkhole near the southbound entrance to Highway 17 at Scotts Valley Drive. No action was taken.

Closed session ended at 9:13 pm.

10. Report on Closed Session and Additional Items

General Manager McNair provided a summary of the closed session, including that the Board discussed with legal counsel anticipated litigation. No action was taken.

16. Adjourn

The meeting adjourned at 9:15 p.m.

Approved:

Attest:

Ruth Stiles, Board President

David McNair, Board Secretary

AGENDA REPORT

Scotts Valley Water District

Date: 2/12/2026

To: Board of Directors

Item: Consent 4.3

Subject: **Water Loss Audit Report 2024**

Reason: Complies with Water Code section 10608.34

SUMMARY

Recommendation: Receive the validated Water Loss Audit Report for CY2024.

Fiscal Impact: None

Previous Related Action: None

BACKGROUND

Senate Bill (SB) 555, Urban Retail Water Suppliers: Water Loss Management, requires water suppliers to conduct and submit water loss audit reports to the Department of Water Resources (DWR) annually.

This regulation also instructed the State Water Resources Control Board (SWRCB) to develop water loss performance standards for urban retail water suppliers by 2020. The standards are designed to determine a level of economically achievable water loss reduction for each water supplier.

DISCUSSION

All water suppliers are required to use the AWWA M-36 Water Audit Software program, which scores utilities in several key categories that include water supplied, authorized consumption, water losses, non-revenue water, system data, and cost data. Beginning in calendar year 2022, water suppliers were required to use the newly available Version 6 software. The Version 6 software introduced an interactive data grading that had not been previously used. Every categorical score must meet or exceed detailed criteria built into the program and final audit reports are reviewed and validated by a certified third-party auditor before these reports are accepted by the state. Final audit report scores range between 0 and a perfect score of 100.

The District received an audit score of 85 for 2024, meeting the previous audit scores in 2022 and 2023. A key goal for the audit process is to reveal utility strengths and to help define and focus areas for improvement. District strengths include an up-to-date billing and financial

software and annual independent financial audits. On the operations side the District utilizes GIS based mapping with a hydraulic model, well defined pressure zones, a good inventory of water mains, the meter changeout & AMI installation program, annual random testing of customer water meters and annual testing of source and interconnection water meters. Upcoming actions that will improve future audit scores will be the continued testing of source and intertie water meters, establishing a program to manage and reduce water pressure over the entire distribution system, and establishing defined agreements with agencies that the District is interconnected with.

Submitted,

Nate Gillespie
Operations Manager

Enclosed: Water Loss Audit Report 2024
 Certified Validation Report

AWWA Free Water Audit Software: Worksheet

FWAS v6.0

American Water Works Association.
Copyright © 2020, All Rights Reserved.

Water Audit Report for: **Scotts Valley Water District**
Audit Year: **2024** **Jan 01 2024 - Dec 31 2024** [Calendar](#)

Click 'n' to add notes

To edit water system info: [go to start page](#)

Click 'g' to determine data validity grade

All volumes to be entered as: MILLION GALLONS (US) PER YEAR

To access definitions, click the [input name](#)

All volumes to be entered as: MILLION GALLONS (US) PER YEAR

Water Supplied Error Adjustments

choose entry option:

WATER SUPPLIED

VOS	Volume from Own Sources:	<table border="1"><tr><td>n</td><td>g</td><td>9</td></tr></table>	n	g	9	347.368	MG/Yr	<table border="1"><tr><td>n</td><td>g</td><td>8</td></tr></table>	n	g	8	<table border="1"><tr><td>volume</td><td>3.497</td></tr></table>	volume	3.497	MG/Yr	<table border="1"><tr><td>over-registration</td></tr></table>	over-registration	VOSEA
n	g	9																
n	g	8																
volume	3.497																	
over-registration																		
WI	Water Imported:	<table border="1"><tr><td>n</td><td>g</td><td></td></tr></table>	n	g		0.000	MG/Yr					WIEA						
n	g																	
WE	Water Exported:	<table border="1"><tr><td>n</td><td>g</td><td></td></tr></table>	n	g		0.000	MG/Yr					WEEA						
n	g																	

WATER SUPPLIED: **343.871** MG/Yr

AUTHORIZED CONSUMPTION

BMAC	Billed Metered:	<table border="1"><tr><td>n</td><td>g</td><td>9</td></tr></table>	n	g	9	314.106	MG/Yr					
n	g	9										
BUAC	Billed Unmetered:	<table border="1"><tr><td>n</td><td>g</td><td></td></tr></table>	n	g			MG/Yr					
n	g											
UMAC	Unbilled Metered:	<table border="1"><tr><td>n</td><td>g</td><td>10</td></tr></table>	n	g	10	1.603	MG/Yr					
n	g	10										
UUAC	Unbilled Unmetered:	<table border="1"><tr><td>n</td><td>g</td><td>10</td></tr></table>	n	g	10	0.440	MG/Yr					
n	g	10										

AUTHORIZED CONSUMPTION: **316.149** MG/Yr

WATER LOSSES

27.722 MG/Yr

Apparent Losses

SDHE	Systematic Data Handling Errors:	<table border="1"><tr><td>n</td><td>g</td><td>10</td></tr></table>	n	g	10	0.031	MG/Yr					
n	g	10										
CMI	Customer Metering Inaccuracies:	<table border="1"><tr><td>n</td><td>g</td><td>4</td></tr></table>	n	g	4	3.705	MG/Yr					
n	g	4										
UC	Unauthorized Consumption:	<table border="1"><tr><td>n</td><td>g</td><td>3</td></tr></table>	n	g	3	0.785	MG/Yr					
n	g	3										

Default option selected for Unauthorized Consumption, with automatic data grading of 3

Apparent Losses: **4.521** MG/Yr

choose entry option:

<table border="1"><tr><td>custom</td><td>0.031</td></tr></table>	custom	0.031	MG/Yr
custom	0.031		
<table border="1"><tr><td>1.16%</td><td>percent</td></tr></table>	1.16%	percent	
1.16%	percent		
<table border="1"><tr><td>0.25%</td><td>default</td></tr></table>	0.25%	default	
0.25%	default		

under-registration

Real Losses

Real Losses: **23.201** MG/YrWATER LOSSES: **27.722** MG/Yr

NON-REVENUE WATER

NON-REVENUE WATER: **29.765** MG/Yr

SYSTEM DATA

Lm	Length of mains:	<table border="1"><tr><td>n</td><td>g</td><td>8</td></tr></table>	n	g	8	65.3	miles					
n	g	8										
Nc	Number of service connections:	<table border="1"><tr><td>n</td><td>g</td><td>8</td></tr></table>	n	g	8	4,550						
n	g	8										
	Service connection density:	<table border="1"><tr><td>n</td><td>g</td><td></td></tr></table>	n	g		70	conn./mile main					
n	g											

(including fire hydrant lead lengths)
(active and inactive)Are customer meters typically located at the curbstop/property line? **Yes**

Lp Average length of customer service line has been set to zero and a data grading of 10 has been applied

AOP Average Operating Pressure: **116.0** psi

COST DATA

CRUC	Customer Retail Unit Charge:	<table border="1"><tr><td>n</td><td>g</td><td>10</td></tr></table>	n	g	10	\$21.28	\$/1000 gallons (US)					
n	g	10										
VPC	Variable Production Cost:	<table border="1"><tr><td>n</td><td>g</td><td>10</td></tr></table>	n	g	10	\$2,015.49	\$/Million gallons					
n	g	10										

Total Annual Operating Cost

\$5,938,526 \$/yr (optional input)

WATER AUDIT DATA VALIDITY TIER:

*** The Water Audit Data Validity Score is in Tier IV (71-90). See Dashboard tab for additional outputs. ***

go to dashboard

A weighted scale for the components of supply, consumption and water loss is included in the calculation of the Water Audit Data Validity Score

PRIORITY AREAS FOR ATTENTION TO IMPROVE DATA VALIDITY:

Based on the information provided, audit reliability can be most improved by addressing the following components:

1: Customer Metering Inaccuracies (CMI)
2: Volume from Own Sources (VOS)
3: Unauthorized Consumption (UC)

KEY PERFORMANCE INDICATOR TARGETS:

OPTIONAL: If targets exist for the operational performance indicators, they can be input below:

Unit Total Losses:	<table border="1"><tr><td> </td></tr></table>		gal/conn/day
Unit Apparent Losses:	<table border="1"><tr><td> </td></tr></table>		gal/conn/day
Unit Real Losses ^a :	<table border="1"><tr><td> </td></tr></table>		gal/conn/day
Unit Real Losses ^b :	<table border="1"><tr><td> </td></tr></table>		gal/mile/day

If entered above by user, targets will display on KPI gauges (see Dashboard)

Certified Validation Report Template, Part A: Provided by Validator

Audit Information

Water System Name: Scotts Valley Water District

Public Water System Identification (PWSID)¹: CA4410013

¹List only 1 PWSID, which should match the PWSID on the FWAS Instructions Tab. For Special cases where multiple water systems are connected with permanent two-way interties, list those additional PWSIDs in the Notes below and describe the water distribution system(s) configuration.

Insert Logo (Optional)

PWSID and Special Water System Configuration Notes (Provided to Validator by Water System):

Single system. Supporting documentation provided.

Audit Period Start Date: 1/1/2024

Validation Date: 9/30/2025

Sufficient Supporting Documents Provided: Yes

Water System Representatives

Nate Gillespie

Validation Findings & Confirmation Statement

Key Audit Metrics:

Data Validity Score: 85

Non-revenue water as percent of cost of operating system: 2.47%

Data Validity: Tier IV (71-90)

Real Loss: 13.9 gal/conn/day or 972 gal/mile/day

Apparent Loss: 2.7 gal/conn/day

ILI: 0.5

Certification Statement by Validator:

This water loss audit report has been Level 1 validated per the requirements of California Code of Regulations Title 23, Division 2, Chapter 7 and the California Water Code Section 10608.34.

All recommendations on volume derivation and Data Validity Grades were incorporated into the water audit: Yes

If not, rejected recommendations are included here: [Redacted]

Validator Information

Water Audit Validator Name: Gemma Pelagio

CA-NV AWWA WAV Certification Expiration Date: 7/11/2028

Email: gemmapelagio@nobel-systems.com

Qualifications: Water Audit Validator Certificate issued by the CA-NV Section of the AWWA

AGENDA REPORT

Scotts Valley Water District

Date: 02/12/26

To: Board of Directors

Item: Business 6.1

Subject: **Rainfall Conditions Mid Water Year 2026 (WY26)**

Reason: Supports District Mission. Complies with the 2020 Water Shortage Contingency Plan.

SUMMARY

Recommendation: Receive Information

Fiscal Impact: None

Previous Related Action: On 06/10/21 the Board adopted Resolution No. 05-21 approving the 2020 Water Shortage Contingency Plan (WSCP).

On 06/09/23 the Board ended Stage 2 Water Supply Conditions and Add-on Drought Rates, effective 02/01/23.

On 05/10/23 the Board moved from Stage 1 Water Supply Conditions to Normal Water Supply Conditions effective 06/01/23.

On 05/08/25 the Board established Stage 1 Water Supply Conditions effective 06/01/25. due to WY25 rainfall accumulations of 60% of historical annual average (HAA). This action was in accordance with the Districts WSCP.

BACKGROUND

The Board established Stage 1 Water Supply Conditions that went into effect 06/01/25 due to WY25's lackluster rainfall accumulations totaling 60% of the HAA. This action was in accordance with the Districts WSCP.

Discussion

This mid-season update focuses on rainfall only. Rainfall is the first criteria to consider when considering annual demand reduction stages (if any) in accordance with the WSCP.

WATER SUPPLY CONDITION - as of February 3, 2026		Average Rainfall	Rainfall (inches)					Rainfall (percent of average)					Cumulative		Single Year
			2022	2023	2024	2025	2026	2022	2023	2024	2025	2026	3-year	2-year	
Stage 1	Cumulative rainfall over 2 years < 80% of average and/or Single year rainfall < 75% of average	41.01	27.27	54.12	32.7	25.27	22.58	66%	132%	80%	62%	55%		58%	55%
Stage 2	Cumulative rainfall over 2 years < 70% of average and/or Single year rainfall < 60% of average	41.01	27.27	54.12	32.7	25.27	22.58	66%	132%	80%	62%	55%		58%	55%
Stage 3	Cumulative rainfall over 3 years < 50% of average and/or Single year rainfall < 50% of average	41.01	27.27	54.12	32.7	25.27	22.58	66%	132%	80%	62%	55%	65%		55%
Stage 4	Same or worse than Stage 3	41.01	27.27	54.12	32.7	25.27	22.58	66%	132%	80%	62%	55%	65%		55%
WATER SUPPLY CONDITION - WHAT IF SCENARIO F10 2026 (I)		Average Rainfall	Rainfall (inches)					Rainfall (percent of average)					Cumulative		Single Year
			2022	2023	2024	2025	2026	2022	2023	2024	2025	2026	3-year	2-year	
Stage 1	Cumulative rainfall over 2 years < 80% of average and/or Single year rainfall < 75% of average	41.01	27.27	54.12	32.7	25.27	30.75	66%	132%	80%	62%	75%		68%	75%
Stage 2	Cumulative rainfall over 2 years < 70% of average and/or Single year rainfall < 60% of average	41.01	27.27	54.12	32.7	25.27	30.75	66%	132%	80%	62%	75%		68%	75%
Stage 3	Cumulative rainfall over 3 years < 50% of average and/or Single year rainfall < 50% of average	41.01	27.27	54.12	32.7	25.27	30.75	66%	132%	80%	62%	75%	72%		75%
Stage 4	Same or worse than Stage 3	41.01	27.27	54.12	32.7	25.27	30.75	66%	132%	80%	62%	75%	72%		75%
WATER SUPPLY CONDITION - WHAT IF SCENARIO F10 2026 (II)		Average Rainfall	Rainfall (inches)					Rainfall (percent of average)					Cumulative		Single Year
			2022	2023	2024	2025	2026	2022	2023	2024	2025	2026	3-year	2-year	
Stage 1	Cumulative rainfall over 2 years < 80% of average and/or Single year rainfall < 75% of average	41.01	27.27	54.12	32.7	25.27	39.95	66%	132%	80%	62%	97%		80%	97%
Stage 2	Cumulative rainfall over 2 years < 70% of average and/or Single year rainfall < 60% of average	41.01	27.27	54.12	32.7	25.27	39.95	66%	132%	80%	62%	97%		80%	97%
Stage 3	Cumulative rainfall over 3 years < 50% of average and/or Single year rainfall < 50% of average	41.01	27.27	54.12	32.7	25.27	39.95	66%	132%	80%	62%	97%	80%		97%
Stage 4	Same or worse than Stage 3	41.01	27.27	54.12	32.7	25.27	39.95	66%	132%	80%	62%	97%	80%		97%

The cumulative rainfall total through February 3rd is 20.3" which is 50% of the HAA. In comparison, the historical cumulative rainfall total through the month of January is 22.58" which would be 55% of the current HAA.

The WSCP requires a single year's rainfall average to be at least 75% of the HAA to be considered normal water supply conditions.

This report is the mid-year status update. Final ground water supply conditions recommendations go before the Board in May for consideration.

Submitted,

David McNair
General Manager

STAFF REPORT - Finance

Scotts Valley Water District

Date: 02/12/2026

To: Board of Directors

From: General Manager

Item: Staff Reports 7.3

Subject: **Financial Reports 07/01/25 through 12/31/2025**

Summary

Fiscal Year-to-Date (YTD) figures reflect the period of 07/01/25 through 12/31/25. YTD revenues (excluding grants) total \$4.8M and expenses (excluding grants) total \$6.5M. Grant Revenue totals \$3.2M and \$2.64M of that is payable to City of Santa Cruz.

Revenue

December is the sixth month of the fiscal year. YTD potable water sales revenue is \$2.57M, water services revenue is \$1.45M and \$15K has been collected from new connections. Property tax revenue of \$42K was collected. Total YTD revenue in the potable water fund, excluding grants, is \$4.3M, equal to 42% of the budget and 2% lower than last year due to reduced revenue from new connections.

YTD recycled water sales revenue is \$426K, water services revenue is \$52K. Total YTD revenue of \$478K in the recycled water fund equals 65% of the budget, which is 6% higher than for the same period of last fiscal year.

Expenses

Combined YTD operating expenses are in-line with the budget, with expenses of \$3.5M representing 46% of the budget. Net project expenditures total \$1.48M and the debt service principal payments of \$950K have been made.

Fund Balance

At the end of December, cash reserves were approximately \$9M. An additional \$1.5M are held in investments and \$945K is booked in Accounts Receivable.

Enclosed

Quarterly Financial Report 07/01/25 – 12/31/25

Budget Status Balance 07/01/25 – 12/31/25

Budget Status Revenue 07/01/25 – 12/31/25

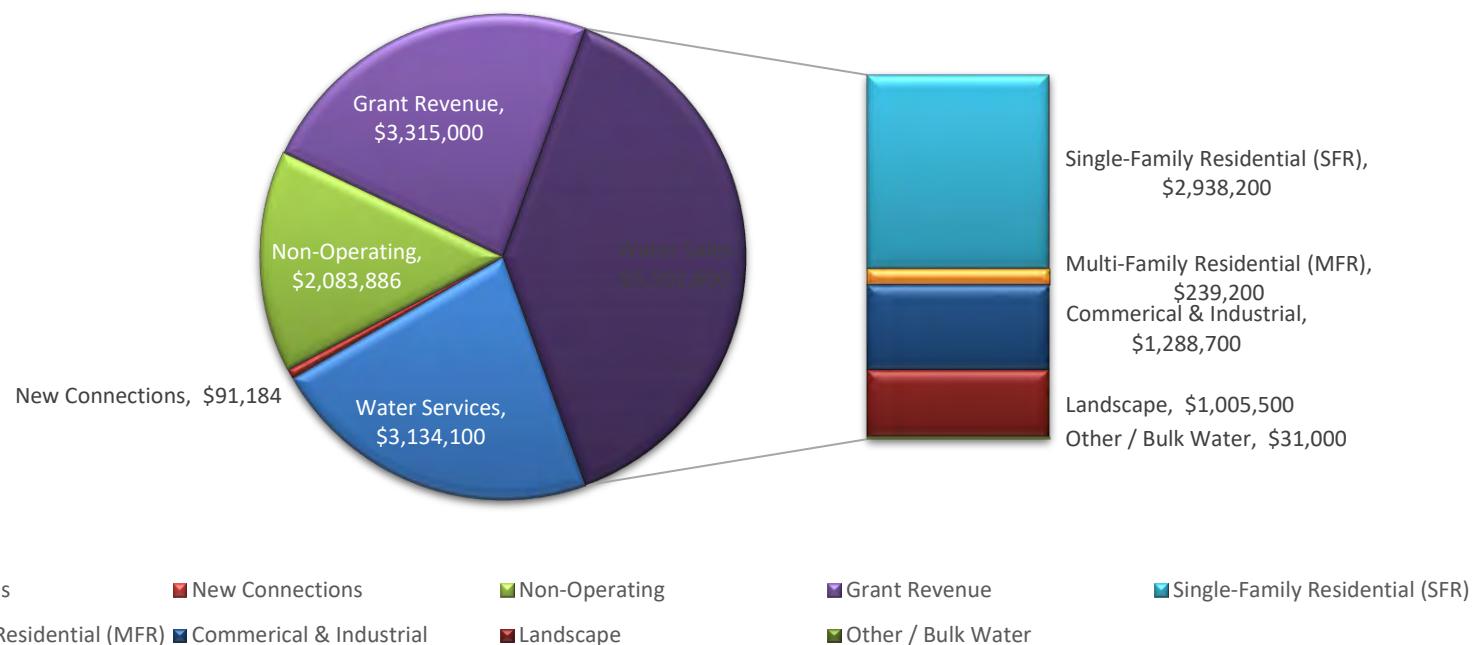
Budget Status Expense 07/01/25 – 12/31/25

Projects Expense 07/01/25 - 12/31/25

Balance Sheet 12/31/25

Check Register 12/01/25 – 12/31/25

Investment Summary 12/31/25

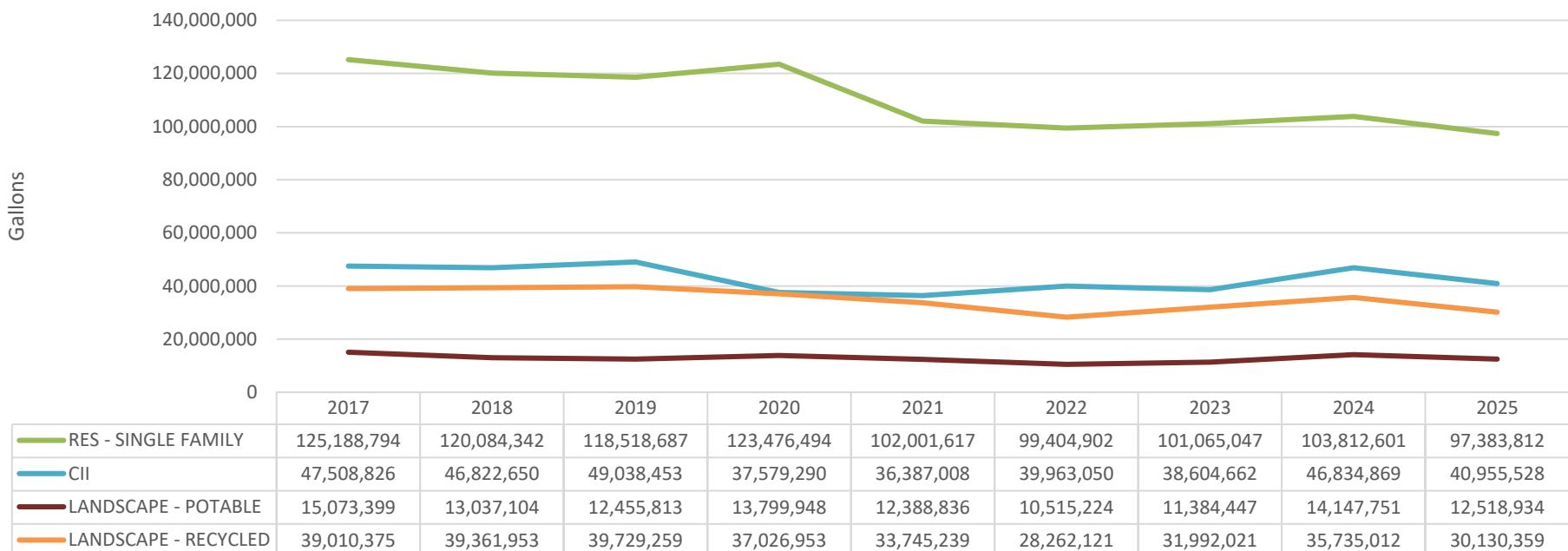

SCOTTS VALLEY
WATER DISTRICT

FY 2026 – Q2 Financial Report

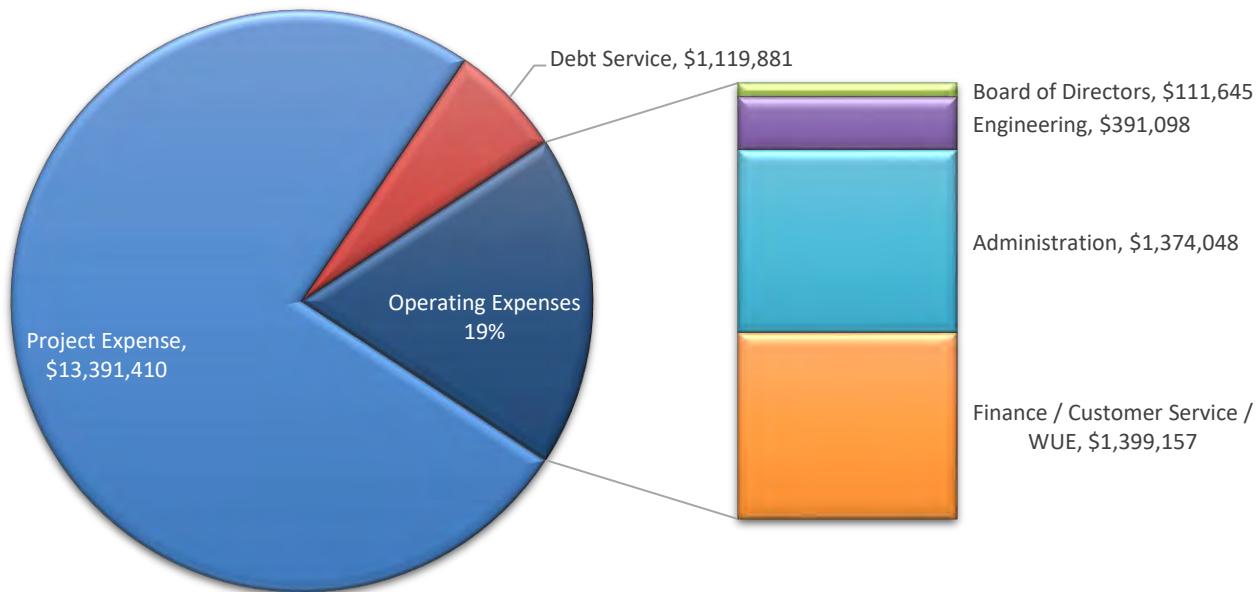
July 1, 2025 – December 31, 2025


FY 2026 Revenue Budget

Scotts Valley Water District revenues come from four main sources: Water Sales, Water Services (Basic Service Charge), New Connections, and Non-Operating*.



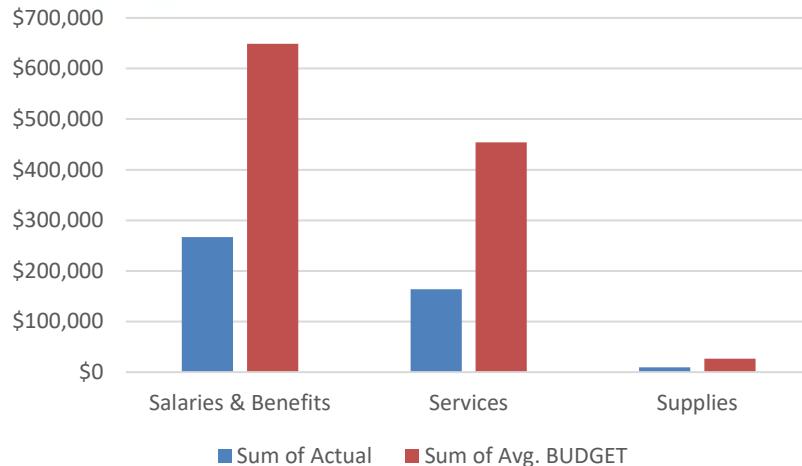
YTD Revenue Vs Budget

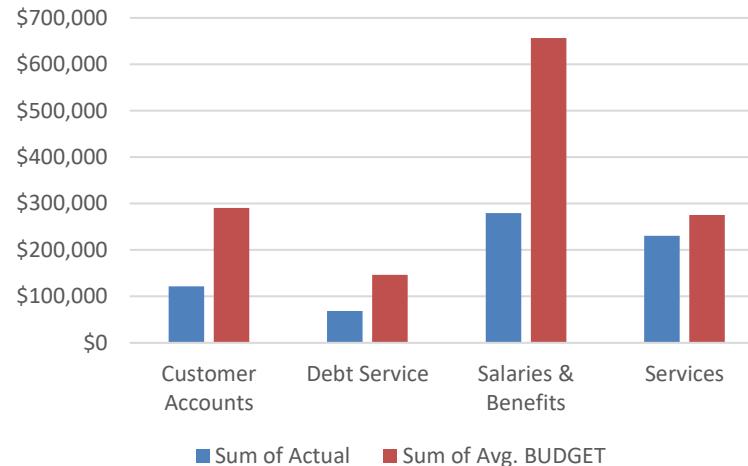


Consumption History

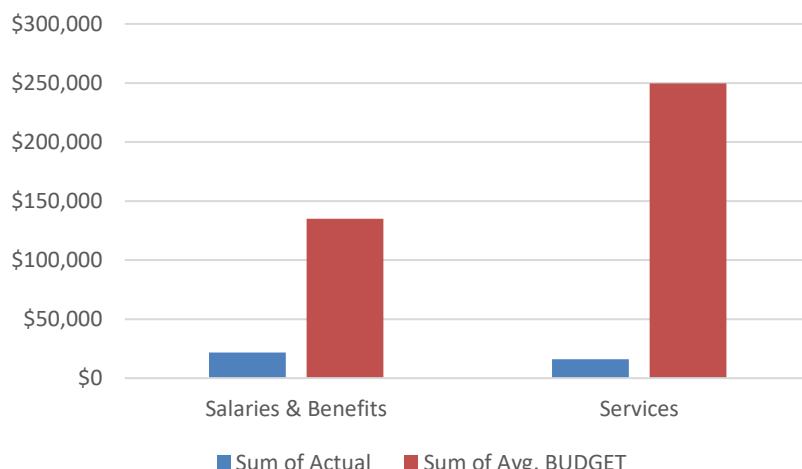

FY 2026 Expense Budget

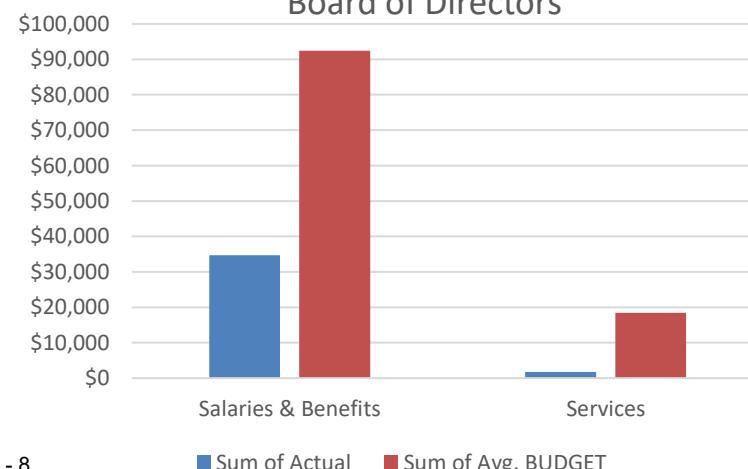
District expenses are comprised of three major categories: Operating Expenses, Project Expenses, and Debt Service. The chart above presents the FY 2026 Budget by expense category, with Operating Expenses broken down by Division.


Expenses by Department

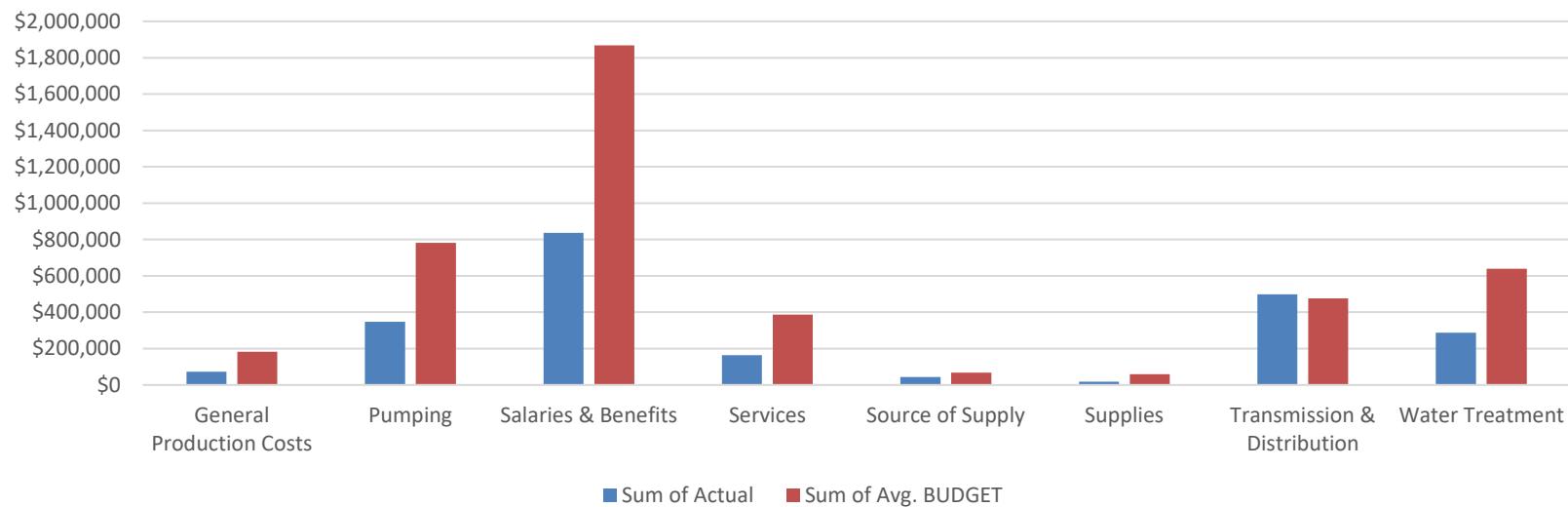


SCOTTS VALLEY WATER DISTRICT


Administration

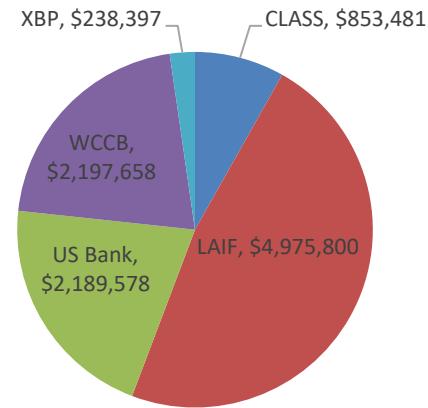

Finance / Customer Service

Engineering



Board of Directors

Operations

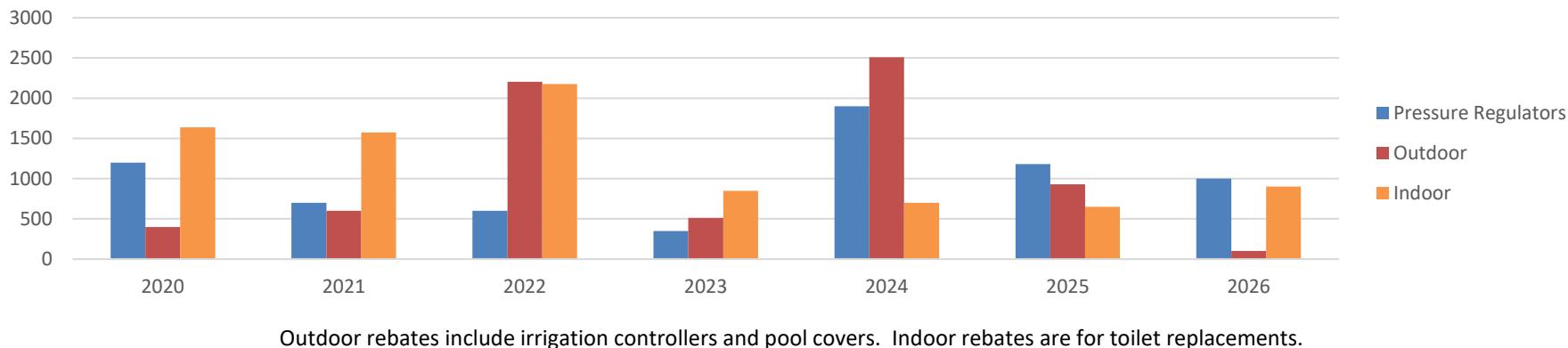


YTD Project Spending

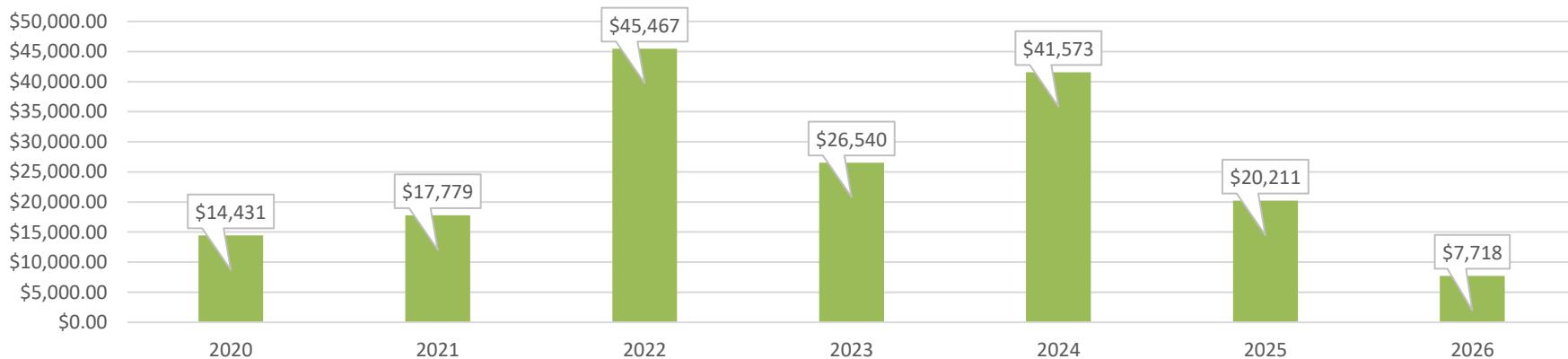
Project	Description	YTD	Budget	Column1	Column2
C15007	Grace Wy Well	\$ 525,975	\$ 930,866	\$ 404,891	43%
C16024	Bethany Tank Rehabilitation	\$ 1,150	\$ 481,387	\$ 480,237	100%
C17011	Automated Metering Infrastructure (AMI)	\$ -	\$ 16,000	\$ 16,000	100%
C19020	El Pueblo Water Treatment Plant Improvements	\$ -	\$ 181,410	\$ 181,410	100%
C19070	Vehicle Replacement Program	\$ 62,448	\$ 180,000	\$ 117,552	65%
C20010	Main Replacement Program - Potable	\$ 450,605	\$ 542,000	\$ 91,395	17%
C20040	Administrative Building Improvements	\$ 8,528	\$ 20,000	\$ 11,472	57%
C21010	Well 10 WTP Improvements	\$ -	\$ 200,000	\$ 200,000	100%
C22010	Well 3B Replacement	\$ 178,962	\$ 339,951	\$ 160,989	47%
C22020	Specialized Operations Equipment	\$ -	\$ 49,227	\$ 49,227	100%
C23010	SCWD-SVWD System Intertie	\$ 1,964,667	\$ 7,756,878	\$ 5,792,212	75%
C24010	Glenwood Tank Landslide Evaluation & Repair	\$ 19,930	\$ 495,000	\$ 475,070	96%
C24020	Monte Fiore PS Rehab	\$ 10,792	\$ 502,412	\$ 491,620	98%
C24030	System wide pressure reduction program	\$ 195,930	\$ 339,402	\$ 143,472	42%
C24040	Distribution system improvements in Montevalle	\$ -	\$ 112,045	\$ 112,045	100%
C24050	Corp Yard Improvements	\$ -	\$ 35,425	\$ 35,425	100%
C25000	SCADA Improvements- Teledesign Radio and Kingfisher RTU Replacements	\$ 18,344	\$ 202,127	\$ 183,783	91%
C26010	Orchard Run Well Rehab	\$ 78,876	\$ 255,000	\$ 176,124	69%
C26020	VFD installation at Orchard WTP	\$ -	\$ 175,000	\$ 175,000	100%
C26030	Solar Installation	\$ -	\$ 25,000	\$ 25,000	100%
C26040	Sequoia Tank Roof Recoat	\$ 259,285	\$ 292,280	\$ 32,995	11%
M17011	Meter Replacement Program	\$ 14,587	\$ 60,000	\$ 45,413	76%
-	PW Tank Seam Resealing	\$ -	\$ 125,000	\$ 125,000	100%
-	RW Tank Seam Resealing	\$ -	\$ 75,000	\$ 75,000	100%
Project Expense Totals		\$ 3,790,079	\$ 13,391,410		

SCOTTS VALLEY WATER DISTRICT

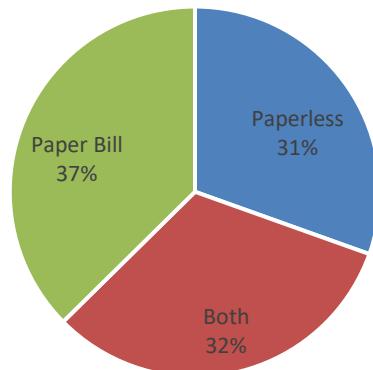
Institution	Investment	CUSIP	Purchased	Maturity	Purchase \$	9/30/2025 Yield	12/31/2025 Yield	9/30/2025 Value	12/31/2025 Value
LAIF	Local Agency Investment Fund		various			4.34%	4.20%	\$ 4,922,062	\$ 4,975,800
CLASS	California CLASS Local Govt Investment Pool		various			4.27%	3.88%	\$ 844,859	\$ 853,481
WCCB	Checking - General		various			0.50%	0.50%	\$ 44,645	\$ 290,569
WCCB	Checking - Payroll		various			0.50%	0.50%	\$ 85,609	\$ 74,104
WCCB	Checking - Revenue		various			0.50%	0.50%	\$ 1,000,000	\$ 1,000,000
WCCB	IntraFi Savings		various			4.26%	4.15%	\$ 1,284,533	\$ 832,985
XBP	Checking - Revenue		various			0.00%	0.00%	\$ 406,239	\$ 238,397
US Bank	Checking - Investments		various			0.16%	0.16%	\$ 182,968	\$ 712,578
US Bank	Safekeeping - BofA CD - 2 Yr	06051V5X0	12/6/2023	12/8/2025	\$ 244,000	5.05%	5.05%	\$ 244,000	\$ -
US Bank	Safekeeping - SCE FCU CD - 2 Yr	78413RAG2	12/12/2023	12/12/2025	\$ 248,000	5.00%	5.00%	\$ 248,000	\$ -
US Bank	Safekeeping - Discover CD - 3 Yr	254676CHO	12/11/2023	12/11/2026	\$ 244,000	4.85%	4.85%	\$ 244,000	\$ 244,000
US Bank	Safekeeping - Greenwood MFCU CD - 3 Yr	39729LAK7	12/11/2023	12/11/2026	\$ 248,000	4.90%	4.90%	\$ 248,000	\$ 248,000
US Bank	Safekeeping - Morgan Stanley - 3 Yr	61690DSC3	6/5/2024	6/7/2027	\$ 246,000	4.90%	4.90%	\$ 246,000	\$ 246,000
US Bank	Safekeeping - Morgan Stanley Private - 3 Yr	61768E4S9	6/5/2024	6/7/2027	\$ 246,000	4.90%	4.90%	\$ 246,000	\$ 246,000
US Bank	Safekeeping - State Bank of India CD - 3 Yr	856288AM7	12/13/2024	12/13/2027	\$ 244,000	4.15%	4.15%	\$ 244,000	\$ 244,000
US Bank	Safekeeping - Celtic Bank CD - 3 Yr	15118RT31	12/20/2024	12/20/2027	\$ 249,000	4.05%	4.05%	\$ 249,000	\$ 249,000
Subtotal for Unrestricted Funds:						%		\$ 10,739,916	\$ 10,454,912


Rebate Details

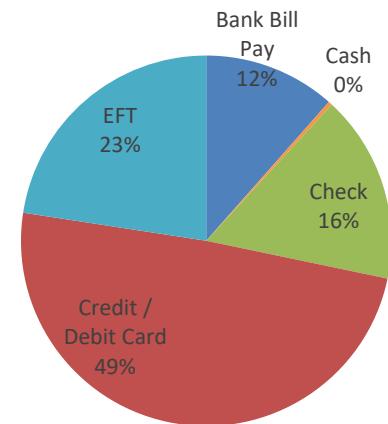
July 1, 2025 – December 31, 2025


Type	Rebate Offerings	#Accounts	Qty / Sq Ft	Rebate Amount	Water Savings gal/year	Gallons Saved / \$ Spent
Irrigation Controller	\$100	1	1	\$ 100	7500	\$ 75.01
Lawn Replacement	\$2 / Sq Ft	4	3859	\$ 7,718	68687	\$ 8.90
Toilet Replacement	\$50-\$100	8	13	\$ 900	7118	\$ 7.91
PRV	\$100	11	10	\$ 1,000	0	\$ 0

Rebates – July - Dec



Lawn Replacement Rebates – July - Dec



How do Customers Receive Their Bill?

How do Customers Pay Their Bill?

Delinquent Account Tracking

	Total Water Accounts	Receivable	Over 30 Days	Over 60 Days	Over 90 Days	Over 120 Days
At 01/07/26						
No. of Accounts		4550	346	123	65	4
Amount	\$	619,052	\$ 54,602	\$ 17,216	\$ 9,387	\$ 471

Budget Status - Balance

Period: 07/01/25 - 12/31/25

FY Remain: 50%

Period: 4 months

	FY 2025 YTD Actual	FY 2026 YTD Actual	FY 2026 vs. FY 2025	YOY % change	FY 2026 Budget	Remaining Balance	FY 2026 % Remaining
Potable Water - Fund 01							
Water Sales & Services (R10, R20)	\$ 4,121,162	\$ 4,020,724	\$ (100,438)	-2%	\$ 8,042,900	\$ 4,022,176	50%
New Connections (R25)	\$ 40,415	\$ 14,898	\$ (25,517)	-63%	\$ 84,184	\$ 69,286	82%
Non-Operating Revenue (R30)	\$ 227,732	\$ 261,547	\$ 33,814	15%	\$ 2,067,286	\$ 1,805,739	87%
Grant Revenue (R40)	\$ 1,090,864	\$ 3,179,218			\$ 3,363,830		
Potable Water Total	\$ 4,389,309	\$ 7,476,387	\$ 3,087,077	70%	\$ 10,194,370	\$ 2,717,983	27%
Recycled Water - Fund 02							
Water Sales & Services (R10, R20)	\$ 451,325	\$ 478,134	\$ 26,809	6%	\$ 713,400	\$ 235,266	33%
New Connections (R25)	\$ -	\$ -	\$ -	-	\$ -	\$ -	-
Other Revenue (R30, R40)	\$ -	\$ -	\$ -	-	\$ 16,600	\$ 16,600	100%
Recycled Water Total	\$ 451,325	\$ 478,134	\$ 26,809	6%	\$ 730,000	\$ 251,866	35%
TOTAL REVENUE	\$ 4,840,634	\$ 7,954,521	\$ 3,113,886	64%	\$ 10,924,370	\$ 2,969,849	27%
Expenses - Fund 01 and Fund 02 Combined							
Salaries & Benefits (E01)	\$ 1,563,334	\$ 1,440,168	\$ (123,166)	-8%	\$ 3,334,641	\$ 1,894,473	57%
Services & Supplies (E03-E80)	\$ 2,050,382	\$ 2,055,498	\$ 5,115	0%	\$ 4,199,784	\$ 2,144,286	51%
Project Expenses*	\$ 530,548	\$ 2,017,088	\$ 1,486,540		\$ 5,634,532	\$ 3,617,444	64%
Grant Funded Project Expense*		\$ 2,640,225			\$ 5,856,878	\$ 3,216,653	55%
Debt Service - Principal	\$ 931,320	\$ 949,811	\$ 18,491	2%	\$ 949,811	\$ -	0%
TOTAL EXPENSES *	\$ 5,075,584	\$ 9,102,789	\$ 4,027,206	79%	\$ 19,975,646	\$ 10,872,856	54%
NET REVENUE	\$ (234,949)	\$ (1,148,269)	\$ (913,320)		\$ (9,051,276)	\$ (7,903,007)	

Budget Status - Revenue

Period: 07/01/25 - 12/31/25

FY Remain: 50%

Fund 01	Potable Water	FY 2025		FY 2026		FY 2026 vs. FY 2025	YOY % change	FY 2026 Budget	FY 2026	
		YTD Actual	YTD Actual	YTD Actual	YTD Actual				Remaining Balance	%
R10	Operating Revenue - Water Sales									
01-000-41101	Residential Consumption - SF	\$ 1,587,468	\$ 1,495,116	\$ (92,352)	-6%	\$ 2,938,200	\$ 1,443,084	49%		
01-000-41102	Residential Consumption - MF	\$ 113,378	\$ 119,061	\$ 5,683	5%	\$ 239,200	\$ 120,139	50%		
01-000-41103	CII Consumption	\$ 619,732	\$ 564,599	\$ (55,133)	-9%	\$ 1,288,700	\$ 724,101	56%		
01-000-41105	Irrigation Consumption	\$ 339,546	\$ 315,477	\$ (24,069)	-7%	\$ 514,000	\$ 198,523	39%		
01-000-41106	CII Consumption - Other	\$ 63,594	\$ 62,111	\$ (1,482)	-2%	\$ -	\$ (62,111)			
01-000-41200	Other - Bulk Water	\$ 22,169	\$ 14,232	\$ (7,937)	-36%	\$ 31,000	\$ 16,768	54%		
	R10 Sub Totals:	\$ 2,745,887	\$ 2,570,597	\$ (175,289)	-6%	\$ 5,011,100	\$ 2,440,503	49%		
R20	Operating Revenue - Water Services									
01-000-41300	Other - Late Penalty	\$ 10,742	\$ 15,423	\$ 4,681	44%	\$ 18,100	\$ 2,677	15%		
01-000-42100	Standby Basic Meter Charge	\$ 1,320,650	\$ 1,388,055	\$ 67,405	5%	\$ 2,920,300	\$ 1,532,245	52%		
01-000-42121	Standby FP Basic Meter Charge	\$ 39,858	\$ 42,313	\$ 2,454	6%	\$ 84,700	\$ 42,387	50%		
01-000-43300	Other Operating Revenue	\$ 4,025	\$ 4,336	\$ 311	8%	\$ 8,700	\$ 4,364	50%		
	R20 Sub Totals:	\$ 1,375,276	\$ 1,450,127	\$ 74,851	5%	\$ 3,031,800	\$ 1,581,673	52%		
R25	Operating Revenue - New Connections									
01-000-42101	Other Meter Fee	\$ 706	\$ 353	\$ (353)	-50%	\$ 1,300	\$ 947	73%		
01-000-42102	Other Capacity Fee	\$ 39,209	\$ 13,300	\$ (25,909)	-66%	\$ 82,184	\$ 68,884	84%		
01-000-42120	Other FP Meter Fee	\$ -	\$ 945	\$ 945		\$ 700	\$ (245)	-35%		
01-000-43100	Other Will Serve	\$ 500	\$ -	\$ (500)	-100%	\$ -	\$ -	-		
01-000-43200	Other Dev Proj Review	\$ -	\$ 300	\$ 300		\$ -	\$ (300)			
	R25 Sub Totals:	\$ 40,415	\$ 14,898	\$ (25,517)	-63%	\$ 84,184	\$ 69,286	82%		
R30	Non-Operating Revenue - Other									
01-000-46000	Property Taxes	\$ 33,754	\$ 42,453	\$ 8,699	26%	\$ 1,637,492	\$ 1,595,039	97%		
01-000-47110	Interest & Dividend	\$ 74,843	\$ 85,873	\$ 11,030	15%	\$ 110,494	\$ 24,621	22%		
01-000-47115	Interest & Dividend - Restrict	\$ -	\$ -	\$ -		\$ -	\$ -	-		
01-000-47120	Interest - LAIF	\$ 76,208	\$ 106,350	\$ 30,142	40%	\$ 309,700	\$ 203,350	66%		
01-000-47520	Misc. Non-Operating Revenue	\$ 6,273	\$ 19,455	\$ 13,182	210%	\$ 9,600	\$ (9,855)	-103%		
01-000-47530	Unrealized Gain/Loss on Invest	\$ 36,655	\$ -	\$ (36,655)	-100%	\$ -	\$ -	-		
01-000-47540	Third-Party Reimbursements	\$ -	\$ 7,416	\$ 7,416		\$ -	\$ (7,416)			
01-000-47560	Rental Revenue	\$ -	\$ -	\$ -		\$ -	\$ -	-		
	R30 Sub Totals:	\$ 227,732	\$ 261,547	\$ 63,053	15%	\$ 2,067,286	\$ 1,813,155	88%		
R40	Grant Revenue									
01-000-45230	State Grant - DWR 2021	\$ -	\$ 3,179,218	\$ 3,179,218		\$ 3,363,830	\$ 184,612	5%		
	<i>City of Santa Cruz Share</i>	\$ -	\$ 2,640,225	\$ 2,640,225		\$ -	\$ (2,640,225)			
	<i>SVWD Share</i>	\$ -	\$ 538,993	\$ 538,993		\$ -	\$ (538,993)			
	R40 Sub Totals:	\$ -	\$ 3,179,218	\$ 6,358,436		\$ 3,363,830	\$ (2,994,606)	-89%		
Fund 01 Revenue:		\$ 4,389,309	\$ 7,476,387	\$ 6,295,534	70%	\$ 13,558,200	\$ 2,910,011	21%		
Fund 01 Rev Excl Grants & Cap		\$ 4,389,309	\$ 4,297,169	\$ (62,902)	-2%	\$ 10,194,370	\$ 5,904,617	58%		

Budget Status - Revenue

Period: 07/01/25 - 12/31/25

FY Remain: 50%

Fund 02	Description	FY 2025		FY 2026		YOY % change	FY 2026 Budget	FY 2026	
		YTD Actual	YTD Actual	vs. FY 2025	Remaining Balance				
R10	Operating Revenue - Water Sales								
02-000-41105	Irrigation Consumption	\$ 399,465	\$ 423,261	\$ 23,796	6%	\$ 607,200	\$ 183,939	30%	
02-000-41200	Other - Bulk Water	\$ 1,302	\$ 2,385	\$ 1,083	83%	\$ -	\$ (2,385)		
	R10 Sub Totals:	\$ 400,767	\$ 425,645	\$ 24,879	6%	\$ 607,200	\$ 181,555	30%	
R20	Operating Revenue - Water Services								
02-000-41300	Other - Late Penalty								
02-000-42100	Standby Basic Meter Charge	\$ 50,458	\$ 52,363	\$ 1,905	4%	\$ 106,200	\$ 53,837	51%	
02-000-43300	Other Operating Revenue	\$ 100	\$ 125	\$ 25	25%	\$ -	\$ (125)		
	R20 Sub Totals:	\$ 50,558	\$ 52,488	\$ 1,930	4%	\$ 106,200	\$ 53,712	51%	
R30	Non-Operating Revenue - Other								
02-000-47110	Interest & Dividend	\$ -	\$ -	\$ -		\$ 6,600	\$ 6,600	100%	
02-000-47115	Interest & Dividend - Restrict			\$ -		\$ -	\$ -		
02-000-47520	Other Non-Operating Revenue			\$ -		\$ -	\$ -		
02-000-47550	Gain/(Loss) on Sale of FA			\$ -		\$ -	\$ -		
02-000-47560	Notes Receivable Payments	\$ -	\$ -	\$ -		\$ 10,000	\$ 10,000	100%	
	R30 Sub Totals:	\$ -	\$ -	\$ -		\$ 16,600	\$ 16,600	100%	
Fund 02 Revenue:		\$ 451,325	\$ 478,134	\$ 26,809	6%	\$ 730,000	\$ 251,866	35%	
Fund 02 Rev Excl Grants & Cap		\$ 451,325	\$ 478,134	\$ 26,809	6%	\$ 730,000	\$ 251,866	35%	
Revenue Totals:		\$ 4,840,634	\$ 7,954,521	\$ 6,322,343	64%	\$ 14,288,200	\$ 3,161,877	22%	
Revenue Total Excl Grants & Cap Contributions		\$ 4,840,634	\$ 4,775,303	\$ (36,093)	-1%	\$ 10,924,370	\$ 6,156,483	56%	

Budget Status - Expense

Period: 07/01/25 - 12/31/25

FY Remain: 50%

Dept	Category	FY 2025 YTD Actual	FY 2026 YTD Actual	FY 2026 vs. FY 2025	YOY % change	FY 2026 Budget	FY 2026	
							Remaining Balance	%
Fund 01 and Fund 02 Combined								
Dept	Administration							
E01	Salaries & Benefits	\$ 281,410	\$ 267,118	\$ (14,292)	-5%	\$ 645,819	\$ 378,701	59%
E03	General & Admin - Services	\$ 153,175	\$ 163,594	\$ 10,420	7%	\$ 453,995	\$ 290,401	64%
E05	General & Admin - Supplies	\$ 11,509	\$ 9,496	\$ (2,013)	-17%	\$ 16,670	\$ 7,174	43%
E10	Source of Supply	\$ -	\$ -	\$ -	-	\$ 205,307	\$ 205,307	100%
E70	Other	\$ -	\$ -	\$ -	-	\$ -	\$ -	-
Dept 100 Sub Totals:		\$ 446,093	\$ 440,208	\$ (5,885)	-1%	\$ 1,321,791	\$ 881,583	67%
Dept	Finance/Customer Service							
E01	Salaries & Benefits	\$ 315,979	\$ 279,858	\$ (36,121)	-11%	\$ 653,111	\$ 373,253	57%
E03	General & Admin - Services	\$ 219,713	\$ 230,286	\$ 10,572	5%	\$ 273,250	\$ 42,964	16%
E05	General & Admin - Supplies	\$ 2,000	\$ -	\$ (2,000)	-100%	\$ 4,000	\$ 4,000	100%
E35	Customer Accounts	\$ 152,149	\$ 133,433	\$ (18,716)	-12%	\$ 290,835	\$ 157,402	54%
E70	Other	\$ 526,814	\$ 2,642,009	\$ 2,115,195	-	\$ 1,000	-	-
E80	Debt Service - Interest	\$ 78,121	\$ 68,366	\$ (9,755)	-12%	\$ 146,487	\$ 78,121	53%
Dept 200 Sub Totals:		\$ 1,294,776	\$ 3,353,951	\$ 2,059,175	159%	\$ 1,368,683	\$ 655,740	48%
Dept	Operations							
E01	Salaries & Benefits	\$ 865,691	\$ 836,645	\$ (29,046)	-3%	\$ 1,821,802	\$ 985,157	54%
E03	General & Admin - Services	\$ 104,760	\$ 163,200	\$ 58,440	56%	\$ 384,110	\$ 220,910	58%
E05	General & Admin - Supplies	\$ 14,467	\$ 18,615	\$ 4,148	29%	\$ 58,580	\$ 39,965	68%
E07	General Production	\$ 34,863	\$ 72,700	\$ 37,838	109%	\$ 183,600	\$ 110,900	60%
E10	Source of Supply	\$ 17,436	\$ 44,057	\$ 26,621	153%	\$ 67,000	\$ 22,943	34%
E15	Pumping	\$ 335,983	\$ 348,344	\$ 12,362	4%	\$ 729,400	\$ 381,056	52%
E20	Water Treatment	\$ 243,611	\$ 287,561	\$ 43,950	18%	\$ 640,100	\$ 352,539	55%
E25	Transmission & Distribution	\$ 140,184	\$ 498,632	\$ 358,448	256%	\$ 475,500	\$ (23,132)	-5%
E35	Conservation	\$ -	\$ 274	\$ 274	-	\$ 100	\$ (174)	-174%
E70	Other	\$ -	\$ -	\$ -	-	\$ -	\$ -	-
Dept 300 Sub Totals:		\$ 1,756,993	\$ 2,270,028	\$ 513,035	29%	\$ 4,360,192	\$ 2,090,164	48%
Dept	Engineering							
E01	Salaries & Benefits	\$ 67,005	\$ 21,831	\$ (45,174)	-67%	\$ 134,148	\$ 112,317	84%
E03	General & Admin - Services	\$ 4,172	\$ 16,088	\$ 11,915	286%	\$ 249,750	\$ 233,663	94%
E05	General & Admin - Supplies	\$ 11,427	\$ -	\$ (11,427)	-100%	\$ 1,000	\$ 1,000	100%
Dept 400 Sub Totals:		\$ 82,604	\$ 37,918	\$ (44,686)	-54%	\$ 384,898	\$ 346,980	90%
Dept	Board of Directors							
E01	Salaries & Benefits	\$ 33,249	\$ 34,717	\$ 1,468	4%	\$ 79,761	\$ 45,044	56%
E03	General & Admin - Services	\$ -	\$ 1,728	\$ 1,728	-	\$ 18,400	\$ 16,672	91%
E05	General & Admin - Supplies	\$ -	\$ -	\$ -	-	\$ 800	\$ 800	100%
Dept 900 Sub Totals:		\$ 33,249	\$ 36,444	\$ 3,195	10%	\$ 98,961	\$ 62,517	63%

Budget Status - Expense

Period: 07/01/25 - 12/31/25

FY Remain: 50%

		FY 2025 YTD Actual	FY 2026 YTD Actual	FY 2026 vs. FY 2025	YOY % change	FY 2026 Budget	FY 2026 Remaining Balance	FY 2026 % Remaining
Summary								
E01	Salaries & Benefits	\$ 1,563,334	\$ 1,440,168	\$ (123,166)	-8%	\$ 3,334,641	\$ 1,894,473	57%
E03	General & Admin - Services	\$ 481,820	\$ 574,895	\$ 93,075	19%	\$ 1,379,505	\$ 804,610	58%
E05	General & Admin - Supplies	\$ 39,403	\$ 28,110	\$ (11,292)	-29%	\$ 81,050	\$ 52,940	65%
E07	General Production	\$ 34,863	\$ 72,700	\$ 37,838	109%	\$ 183,600	\$ 110,900	60%
E10	Source of Supply	\$ 17,436	\$ 44,057	\$ 26,621	153%	\$ 272,307	\$ 228,250	84%
E15	Pumping	\$ 335,983	\$ 348,344	\$ 12,362	4%	\$ 729,400	\$ 381,056	52%
E20	Water Treatment	\$ 243,611	\$ 287,561	\$ 43,950	18%	\$ 640,100	\$ 352,539	55%
E25	Transmission & Distribution	\$ 140,184	\$ 498,632	\$ 358,448	256%	\$ 475,500	\$ (23,132)	-5%
E35	Customer Accounts	\$ 152,149	\$ 133,707	\$ (18,442)	-12%	\$ 290,835	\$ 157,402	54%
E70	Other	\$ 526,814	\$ 2,642,009	\$ 2,115,195	402%	\$ 1,000	\$ -	0%
E80	Debt Service - Interest	\$ 78,121	\$ 68,366	\$ (9,755)	-12%	\$ 146,487	\$ 78,121	53%
District Expense Total:		\$ 3,613,716	\$ 6,138,550	\$ 2,524,834	70%	\$ 7,534,425	\$ 4,037,158	54%
Excluding Grant Expense			\$ 3,496,541					
Fund 01 and 02 Combined								
E01	Salaries & Benefits	\$ 1,563,334	\$ 1,440,168	\$ (123,166)	-8%	\$ 3,334,641	\$ 1,894,473	57%
E03-E80	Services & Supplies	\$ 2,050,382	\$ 2,056,373	\$ 5,991	0%	\$ 4,199,784	\$ 2,143,411	51%
District Expense Total:		\$ 3,613,716	\$ 3,496,541	\$ (117,175)	-3%	\$ 7,534,425	\$ 4,037,884	54%

Projects - Expense

Period: 07/01/25 - 12/31/25

FY Remain: 50%

Project	Description	FY 2026 YTD Actual	FY 2026		
			FY 2026 Budget	Remaining Balance	%
C15007	Grace Wy Well	\$ 520,506	\$ 930,866	\$ 410,360	44%
C16024	Bethany Tank Rehabilitation	\$ 1,150	\$ 481,387	\$ 480,237	100%
C17011	Automated Metering Infrastructure (AMI)	\$ -	\$ 16,000	\$ 16,000	100%
C19020	El Pueblo Water Treatment Plant Improvements	\$ -	\$ 181,410	\$ 181,410	100%
C19070	Vehicle Replacement Program	\$ 62,448	\$ 180,000	\$ 117,552	65%
C20010	Main Replacement Program - Potable	\$ 650,560	\$ 542,000	\$ (108,560)	-20%
C20040	Administrative Building Improvements	\$ 8,528	\$ 20,000	\$ 11,472	57%
C21010	Well 10 WTP Improvements	\$ -	\$ 200,000	\$ 200,000	100%
C22010	Well 3B Replacement	\$ 186,676	\$ 339,951	\$ 153,275	45%
C22020	Specialized Operations Equipment	\$ -	\$ 49,227	\$ 49,227	100%
C23010	SCWD-SVWD System Intertie*	\$ 2,640,225	\$ 5,856,878	\$ 3,216,653	55%
C24010	Glenwood Tank Landslide Evaluation & Repair	\$ 20,560	\$ 495,000	\$ 474,440	96%
C24020	Monte Fiore PS Rehab	\$ 10,792	\$ 502,412	\$ 491,620	98%
C24030	System wide pressure reduction program	\$ 195,930	\$ 339,402	\$ 143,472	42%
C24040	Distribution system improvements in Montevelle	\$ -	\$ 112,045	\$ 112,045	100%
C24050	Corp Yard Improvements	\$ -	\$ 35,425	\$ 35,425	100%
C25000	SCADA Improvements- Teledesign Radio and Kingfi	\$ 18,344	\$ 202,127	\$ 183,783	91%
C26010	Orchard Run Well Rehab	\$ 78,876	\$ 255,000	\$ 176,124	69%
C26020	VFD installation at Orchard WTP	\$ -	\$ 175,000	\$ 175,000	100%
C26030	Solar Installation	\$ -	\$ 25,000	\$ 25,000	100%
C26040	Sequoia Tank Roof Recoat	\$ 248,130	\$ 292,280	\$ 44,150	15%
M17011	Meter Replacement Program	\$ 14,587	\$ 60,000	\$ 45,413	76%
-	PW Tank Seam Resealing	\$ -	\$ 125,000	\$ 125,000	100%
-	RW Tank Seam Resealing	\$ -	\$ 75,000	\$ 75,000	100%
Projects Expense Totals:		\$ 4,657,313	\$ 11,491,410	\$ 6,834,097	59%

Balance Sheet

Fund 01, Fund 02 and Fund 03 Combined

	12/31/24	12/31/25
Assets		
Cash	\$9,861,557	\$8,967,968
Investments	\$1,975,477	\$1,494,174
Accrued Interest	\$91,252	\$52,612
A/R Customer-Water	\$1,105,508	\$944,079
A/R - Other	(\$43,924)	\$2,282,512
Interfund Loan Receivable	\$1,093,007	\$1,093,007
Inventory	\$234,904	\$263,194
Prepaid Expense	\$56,322	\$57,913
Note Receivable	\$35,000	\$25,000
JPA Investment	\$149,345	\$168,435
Land & Right-of-ways	\$1,218,697	\$1,218,697
Construction-in-progress	\$3,456,002	\$7,703,246
Water Rights / Intangible Assets	\$5,267,833	\$5,267,833
Plant & Equipment	\$45,908,923	\$47,914,474
Depreciation/Amortization	(\$28,278,656)	(\$29,543,921)
Deferred Pension Outflows	\$1,366,327	\$888,208
Unfunded OPEB Liability	\$115,583	\$116,097
	\$43,613,157	\$48,913,528
Liabilities		
A/P & Accrued Expenses	\$477,185	\$2,042,909
Accrued Salaries & Wages	(\$0)	\$14,612
Accrued Interest Payable	\$68,355	\$0
Customer Deposits	\$58,010	\$53,631
Interfund Loans	\$1,093,007	\$1,093,007
LT Liabilities Due in 1 Yr	\$1,013,357	\$796,317
Unearned Revenue	\$80,153	\$75,976
Long-term Liabilities	\$9,146,010	\$8,277,872
Deferred Pension Inflows	\$1,187,814	\$694,399
	\$13,123,891	\$13,048,722
Fund Balance		
Investment in Capital Assets	\$23,190,237	\$23,190,237
Unrestricted Net Position	\$5,545,730	\$11,076,593
	\$28,735,967	\$34,266,830
Total Liabilities and Fund Balance:	\$41,859,858	\$47,315,552
Total Retained Earnings:	\$1,753,298	\$1,597,976
Total Fund Balance and Retained Earnings:	\$30,489,265	\$35,864,806
Total Liabilities, Fund Balance, and Retained Earnings:	\$43,613,157	\$48,913,528

Vendor Name	Check Date	Check Number	Description	Amount
A T & T	12/4/2025	34447	SCADA Auto Modem Dialer 10/13/25 - 11/12/25	\$ 110.99
AAA WORKSPACE	12/4/2025	34448	Copier Paper, Calendar	137.48
AAA WORKSPACE	12/18/2025	34480	Pilot Precise Black Roller Pens	13.39
ACWA/JPIA	12/4/2025	ACH	EE & Retiree Benefits - December 2025	30,561.45
ADP, INC	12/18/2025	34481	ADP Workforce Now November 2025	152.25
ADP, INC	12/18/2025	34481	ADP Time and Attendance November 2025	228.00
ADP, INC	12/18/2025	34481	ADP Payroll - PW-48 November 2025	219.95
ADP, INC	12/18/2025	34481	ADP Payroll - PW-46 November 2025	219.95
AFLAC	12/18/2025	34482	EE Self-Funded Supplemental Benefits November 2025	281.34
ALLQUIP UNIVERSAL	12/18/2025	34483	Warranty Replacement of New Blowe, Service Call, Delivery Charge	859.00
ALLQUIP UNIVERSAL	12/18/2025	34483	Replace Alternator	2,598.38
ALLQUIP UNIVERSAL	12/18/2025	34483	Repair Blower, Making Banging, Rattle Noise	8,978.96
ANDERSON PACIFIC ENGINEERING CONSTRUCTION	12/4/2025	ACH	Granite Creek Watermain Replacement: Striping on Sherman Dr	9,619.26
ANDERSON PACIFIC ENGINEERING CONSTRUCTION	12/4/2025	ACH	Grace Way Well Site Improvements	101,171.10
ANDERSON PACIFIC ENGINEERING CONSTRUCTION	12/4/2025	ACH	2025 Watermain Improvement	101,563.92
ANDERSON PACIFIC ENGINEERING CONSTRUCTION	12/18/2025	ACH	Watermain Improvement	86,795.77
AQUATIC INFORMATICS, INC.	12/18/2025	ACH	Water Trax Software License Renewal (FY2027)	1,961.68
AQUATIC INFORMATICS, INC.	12/18/2025	ACH	Water Trax Software License Renewal (FY2026)	2,746.35
AT&T MOBILITY	12/18/2025	34484	November 2025 Service	906.82
BADGER METER	12/4/2025	34449	Cell Charges PW/RW Meter Reads November 2025	6,115.33
BARTLEY PUMP PM LLC	12/4/2025	ACH	Grace Way Well Head Pedestal & Pump Installation	258,307.75
BARTLEY PUMP PM LLC	12/4/2025	ACH	Frapwell Circle & El Pueblo Rd Work Order	9,420.00
BATTERIES PLUS BULBS #314	12/18/2025	34485	CEL13561 B+ 3FT USBA TO USBC	9.82
BAY AREA COATING CONSULTANT SERVICES	12/4/2025	34450	Inspection Services 9/23/25 - 11/25/25	22,171.20
BRENNETAG NORTH AMERICA LLC	12/18/2025	ACH	L A Chemchlor Sodium	5,695.83
CALPERS	12/5/2025	ACH	CalPERS Retirement - PW-48 Ended 11/24/2025	14,584.51
CALPERS	12/11/2025	ACH	OPS Retirement PW-50 Ended 12/8/25	14,557.80
CALPERS	12/23/2025	ACH	CalPERS Unfunded Liability December 2025	10,129.50
CANON FINANCIAL SERVICES	12/18/2025	34486	Late Fee Assessed	36.50
CANON FINANCIAL SERVICES	12/18/2025	34486	Copier Charge 12/26/25 - 1/25/26	400.60
CANON FINANCIAL SERVICES	12/18/2025	34486	Copier Charge 11/26/25 - 12/25/25	400.60
CANON FINANCIAL SERVICES	12/18/2025	34486	CL Maintenance Overage 08/07/25 - 11/25/05	105.29
CHASE	12/18/2025	ACH	Loan Payment 07/01/2025 - 12/31/2025	6,182.19
CITY OF SCOTTS VALLEY	12/4/2025	34451	Sewer: Well 10 November 2025	8,859.52
CITY OF SCOTTS VALLEY	12/4/2025	34451	Sewer: Old LG Hwy November 2025	6,507.10
CITY OF SCOTTS VALLEY	12/4/2025	34451	Sewer: El Pueblo November 2025	2,566.95
CITY OF SCOTTS VALLEY	12/4/2025	34451	Sewer: 5301 Scotts Valley Dr November 2025	143.06
CITY OF SCOTTS VALLEY	12/4/2025	34451	Sewer: 2 Civic Cir November 2025	286.12
CIVIL CONSULTANTS GROUP INC	12/4/2025	34452	Grace Way Well Engineering	2,400.00
CIVIL CONSULTANTS GROUP INC	12/18/2025	34487	Monthly General Engineering - September & October	515.00
COASTAL EVERGREEN	12/18/2025	34488	Monthly Maintenance December 2025	650.00
CONTRACTOR COMPLIANCE & MONITORING	12/18/2025	34489	Labor Compliance Services Water Main Replacement November 2025	1,681.25
CONTRACTOR COMPLIANCE & MONITORING	12/18/2025	34489	Labor Compliance Services Grace Way Well November 2025	475.00
CONTRACTOR COMPLIANCE & MONITORING	12/18/2025	34489	Labor Compliance Sequoia Tank Venting & Roof Recoating Nov 2025	225.00
CONTRACTOR COMPLIANCE & MONITORING	12/18/2025	34489	Labor Compliance Meadow Way Well Site Improvements Nov 2025	225.00
CONTRACTOR COMPLIANCE & MONITORING	12/18/2025	34489	Labor Compliance Granite Creek Water Main Replacement Nov 2025	981.25
CONTRACTOR COMPLIANCE & MONITORING	12/18/2025	34489	Labor Compliance Grace Way Well Site Improvement Nov 2025	225.00
CORSTORPHINE COLIN	12/4/2025	34453	Community Committee Member Fees Jul-Sep 2025	50.00
DASSELS PETROLEUM	12/18/2025	34490	#47465 Diesel Charges for November 2025	1,627.43
DU-ALL SAFETY, LLC	12/18/2025	34491	Professional Safety Consultation November 2025	170.00
EUROFINS DRINKING WATER AND WASTEWATER WES	12/4/2025	ACH	Compliance Well Testing Well 11A	291.20
EUROFINS DRINKING WATER AND WASTEWATER WES	12/18/2025	ACH	Compliance Well Testing Station 1, 13,17,29	494.40
EXCEEDIO	12/4/2025	34454	Managed Services SCADA 12/1/25 - 12/31/25	1,398.55
EXCEEDIO	12/4/2025	34454	Managed Services 12/1/25 - 12/31/25	5,349.24
EXCEEDIO	12/4/2025	34454	Increase RAM on 12492-Labor	130.00
FIRST FOUNDATION BANK	12/18/2025	ACH	Loan Interest Payable - June to December 2025	62,183.70
GORSKI RAYMOND	12/18/2025	34492	Toilet Replacement x 3	300.00
GREENWASTE RECOVERY, LLC	12/18/2025	34493	Waste Service 70 El Pueblo 11/01/ - 11/30	443.83
GRISWOLD INDUSTRIES	12/4/2025	34455	6" Hytrol 100-01 Globe, Flanged, Ductile, Ball Valves	10,563.67
HARRINGTON INDUSTRIAL PLASTICS, LLC	12/4/2025	34456	Ball Valves, Coupling, Elbow, Union, Nipple	4,862.97
HEALTHEQUITY, INC	12/4/2025	34457	Monthly Fees - November 2025	32.45
HUNT SUZY	12/4/2025	34458	Community Committee Member Fees Jul-Sep 2025	50.00
ICONIX WATERWORKS (US), INC	12/4/2025	ACH	6" Febco LF860, 4" Febco LF880	2,825.80
ICONIX WATERWORKS (US), INC	12/4/2025	ACH	5/8x324 Ford BV HDL FIPXMTR NL	1,041.52
ICONIX WATERWORKS (US), INC	12/4/2025	ACH	4x0'6 FXF DI Spool Black Imp	364.48
INFOSEND	12/18/2025	34494	Statement Data Processing & Mailing November 2025	2,191.26
KASSNER GREGORY	12/4/2025	34459	Community Committee Member Fees Jul-Sep 2025	50.00
KOFFLER ELECTRICAL MECHANICAL	12/4/2025	34460	Field Service: Vibration Analysis	1,225.00
LAS ANIMAS CONCRETE	12/18/2025	34495	LA20S 2 SK Slurry	587.06
M&M BACKFLOW & METER MAINTENANCE	12/4/2025	34461	Annual Meter Maintenance - Bench Testing	625.00
MAILCHIMP	12/3/2025	ACH	Digital Marketing	116.00
MBH PAINTING	12/18/2025	34496	Pipes have Rust Convertor , Finish Coat in a DTM Aristishield	1,261.00
MCNAIR DAVID	12/18/2025	34497	ACWA Conference Flight, Lyft, Parking & Meals	861.49
MCNAIR DAVID	12/18/2025	34497	ACWA Conference Dinner for 5	548.57
MILLER MAXFIELD, INC	12/4/2025	34462	Public Outreach Consulting Services - November 2025	5,974.50
MISSION UNIFORM SERVICE	12/4/2025	34463	Uniform Laundering Service 12/02/25	180.26
MISSION UNIFORM SERVICE	12/4/2025	34463	Uniform Laundering Service 11/25/25	108.87
MISSION UNIFORM SERVICE	12/18/2025	34498	Uniform Laundering Service 12/9/25	108.87
MONRO INC	12/18/2025	ACH	Smog 2017 Ford F250 VIN# 94355	65.00
MONRO INC	12/18/2025	ACH	Paid duplicate to Lloyd's and Monro-both cleared the bank	(467.74)
MONRO INC	12/18/2025	ACH	2018 Ford F150 vin: 16870 Smog & Check Engine Light	1,779.98
MONRO INC	12/18/2025	ACH	2013 Dodge Journey vin:23787 Smog	65.00
MONRO INC	12/18/2025	ACH	2011 Ford F350 vin:16277 Smog	65.00
MONRO INC	12/18/2025	ACH	2006 Ford F250 vin:77563 Smog	165.00
MONTEREY BAY AIR RESOURCES DISTRICT	12/4/2025	34464	Regulatory Fees	4,813.00
MONTEREY BAY AIR RESOURCES DISTRICT	12/4/2025	34464	Permit for Portable Emergency LP Engine Generator	1,866.00
MONTEREY BAY ANALYTICAL SERVICES	12/4/2025	ACH	Samples: 11/24/25	90.00
MONTEREY BAY ANALYTICAL SERVICES	12/4/2025	ACH	Samples: 11/18/25	264.00
MONTEREY BAY ANALYTICAL SERVICES	12/4/2025	ACH	Samples: 11/6/25	176.00
MONTEREY BAY ANALYTICAL SERVICES	12/18/2025	ACH	Samples 12/10/25	140.00
MONTEREY BAY ANALYTICAL SERVICES	12/18/2025	ACH	Samples 12/02/25	414.00
MONTEREY BAY ANALYTICAL SERVICES	12/18/2025	ACH	Samples 11/21/25	56.00
MONTEREY BAY ANALYTICAL SERVICES	12/18/2025	ACH	Samples 11/19/25	281.00

MONTGOMERY & ASSOCIATES, INC	12/18/2025	ACH	Prof Srvcs For Well Siting and Modeling City of SC Intertie	990.50
MORGAN DAN	12/18/2025	34499	Refund Check 012986-000 304 THOMAS TERRACE	71.22
MOUNTAIN BROOK MHOA	12/18/2025	34517	Pressure Regulator Rebate	100.00
NATIONWIDE RETIREMENT SOLUTIONS	12/12/2025	ACH	IRS 457 Plan - PW-50 Ended 12/22/25	2,892.34
NORTH BAY FORD	12/4/2025	34465	2017 Ford F150 VIN#76700 Fan Noise , Changed Oil	2,035.54
O'REILLY AUTOMOTIVE INC	12/4/2025	34466	Wiper Blades	60.27
OLIVE SPRINGS QUARRY	12/18/2025	34500	3/8z MM HMA	130.00
PACE SUPPLY CORP	12/18/2025	34501	Bronze E-Series G2 Ultrasonic Meter	3,349.91
PACIFIC CREST ENGINEERING, INC	12/18/2025	34502	Professiol Services Bethany Tank Replacement November 2025	115.00
PACIFIC GAS & ELECTRIC	12/4/2025	34467	Service 10/09/22 - 11/06/25	46,166.83
PATHPOINT MERCHANT SERVICES	12/31/2025	ACH	PathPoint CC Processing Fees - December 2025	5,640.04
PERRI CHRISTOPHER	12/18/2025	34503	ACWA 2025 Fall Conf - Perri	529.60
PIED PIPER EXTERMINATORS	12/4/2025	34468	Monthly Rodent Control December 2025	270.00
PIED PIPER EXTERMINATORS	12/18/2025	34504	Monthly Rodent Control January 2026 El Pueblo & Mt. Hermon	100.00
PIED PIPER EXTERMINATORS	12/18/2025	34504	Monthly Rodent Control January 2026 4 Locations	270.00
PITNEY BOWES INC	12/4/2025	34469	Postage Meter Service 8/23/25 - 11/22/25	148.99
PRESS BANNER	12/18/2025	34505	1/4 Monthly Ad 1/4/S-New Tab	410.00
RASCHIG USA	12/18/2025	34506	Tri-PP-3.5 NSF to Well 10 and Orchard Well	5,213.52
RED WING BUSINESS ADVANTAGE ACCOUNT	12/18/2025	ACH	Work Boots - Richie	315.76
RED WING BUSINESS ADVANTAGE ACCOUNT	12/18/2025	ACH	Work Boots - Gillespie	275.17
RED WING BUSINESS ADVANTAGE ACCOUNT	12/18/2025	ACH	Work Boots - Carlson	256.52
RED WING BUSINESS ADVANTAGE ACCOUNT	12/18/2025	ACH	Work Boots - Albert	349.25
REIN & REIN	12/18/2025	34507	Legal Counsel November 2025	3,500.00
RESOURCE DEVELOPMENT COMPANY LLC	12/4/2025	34470	Sequoia Tank: Roof Recoating, Tank Shell Spot Repair	221,500.00
RESOURCE DEVELOPMENT COMPANY LLC	12/18/2025	34508	Sequoia Tank: Roof Recoating	148,302.50
RF MACDONALD CO	12/18/2025	34509	Stack Kit, Shaft Seal Kit, Kit Modul for Standard Pump	6,758.61
RICHARDS JUDY	12/18/2025	34510	Refund Check 007637-000, 111 BEAN CREEK RD #43	114.73
SCARBOROUGH LUMBER & BUILDING SUPPLY	12/4/2025	ACH	Tote Utility 27g	36.18
SCARBOROUGH LUMBER & BUILDING SUPPLY	12/4/2025	ACH	Tarp Poly20x30	109.74
SCARBOROUGH LUMBER & BUILDING SUPPLY	12/4/2025	ACH	Red Grnt Hrn Bit, Misc Screws	71.32
SCARBOROUGH LUMBER & BUILDING SUPPLY	12/4/2025	ACH	Quikrete Concrete Mix, Flex Seal, Ace Pipe Rap Anti-Cor	108.53
SCARBOROUGH LUMBER & BUILDING SUPPLY	12/4/2025	ACH	Mag Tape Measure, Screwdriver Slot	41.67
SCARBOROUGH LUMBER & BUILDING SUPPLY	12/4/2025	ACH	Hand Held Sprayer, Comprsn Conn 1/4 x 1/2	45.82
SCARBOROUGH LUMBER & BUILDING SUPPLY	12/4/2025	ACH	Flat Alum Stock, Ibeam Level, Gorilla Tape	69.11
SCARBOROUGH LUMBER & BUILDING SUPPLY	12/4/2025	ACH	5/8' x 3' Threaded Rod, Quikrete Concrete Mix	51.96
SCARBOROUGH LUMBER & BUILDING SUPPLY	12/18/2025	ACH	Wrench Adjustable, Line Chalk, Pliers	152.02
SCARBOROUGH LUMBER & BUILDING SUPPLY	12/18/2025	ACH	Washer Reduce, Misc. Screws	21.84
SCARBOROUGH LUMBER & BUILDING SUPPLY	12/18/2025	ACH	O-Rings	3.91
SCARBOROUGH LUMBER & BUILDING SUPPLY	12/18/2025	ACH	Easy Fire Stapler, Filter Red Push On, 2x4x8' DF PT, Staples	125.05
SCARBOROUGH LUMBER & BUILDING SUPPLY	12/18/2025	ACH	Battery-Alkaline D 8 PK	22.13
SCARBOROUGH LUMBER & BUILDING SUPPLY	12/18/2025	ACH	Adj Wrench, Battery Alkaline 9V	51.76
SCHULZ ALEXANDER	12/4/2025	34471	Community Committee Member Fees Jul-Sep 2025	100.00
SCHULZ JASMIN	12/4/2025	34472	Community Committee Member Fees Jul-Sep 2025	100.00
STEVENSON LANDSCAPING	12/4/2025	34473	Landscaping Service November 2025	750.00
SWRCB	12/4/2025	34474	Annual Fees NPDES	881.00
SWRCB	12/18/2025	34511	Large Water System Fees - FY2026	30,901.96
SWRCB	12/18/2025	34511	Annual Permit Fees FY2026	1,500.00
SWRCB-DWOP CERTIFICATION PROGRAM	12/18/2025	34512	T2 Certification - Urman	60.00
SYCAL ENGINEERING, INC	12/4/2025	ACH	Engineering Sucinto, Win911, Polo/Hacienda	3,120.00
SYCAL ENGINEERING, INC	12/4/2025	ACH	Engineering Grace Way Well	2,411.00
SYCAL ENGINEERING, INC	12/18/2025	ACH	Engineering Grace Way Well	564.00
TIMES PUBLISHING GROUP, INC	12/1/2025	ACH	Monthly Advertising	178.50
UNITED RENTALS, INC	12/4/2025	34475	Forklift: Skyjack	1,280.52
UNITED SITE SERVICES	12/4/2025	34476	Restroom Rental 11/26/25 - 12/23/25	336.90
UNITED SITE SERVICES	12/18/2025	34513	Restroom Rental 12/10/25 - 01/06/26 Mt Hermon Rd	384.79
UNITED SITE SERVICES	12/18/2025	34513	Restroom Rental 12/2/25 - 12/29/25 Sucinto	381.34
UNIVERSAL BUILDING SERVICES	12/4/2025	34477	Monthly Janitorial Services November 2025 70 El Pueblo	496.00
UNIVERSAL BUILDING SERVICES	12/4/2025	34477	Monthly Janitorial Services November 2025 2 Civic Ctr	610.00
UNIVERSAL BUILDING SERVICES	12/18/2025	34514	Monthly Janitorial Services October 2025 El Pueblo	496.00
USABLEBLUEBOOK	12/18/2025	ACH	Muck Chore Steel Toe Boots	212.80
VERIZON WIRELESS	12/1/2025	ACH	Monthly Service Tablets 10/13/25 - 11/12/25	410.94
VERTEXONE SOFTWARE LLC	12/18/2025	ACH	Monthly WaterSmart Maint. November 2025	63.22
VIOLANTE ALLYSON	12/4/2025	34478	Community Committee Member Fees Jul-Sep 2025	25.00
WATER RESOURCES ECONOMICS	12/4/2025	34479	SVWD 2025 Rate Study, Project Management	2,486.25
WATER SYSTEMS CONSULTING, INC	12/18/2025	34515	Services Rendered Through 11/30/25 Related to Grove HOA	1,340.00
WATER SYSTEMS CONSULTING, INC	12/18/2025	34515	SA101 Services Rendered 10/1/25 - 11/30/25 Run 10 Polo Ranch rd	250.00
WEST COAST COMMUNITY BANK	12/26/2025	ACH	WCCB CC Payment December (Nov Charges)	3,574.94
XPRESS BILL PAY	12/9/2025	ACH	Xpress Bill payment Processing Fees - November 2025	3,445.92
	Total	Total	Total	\$ 1,345,910.99

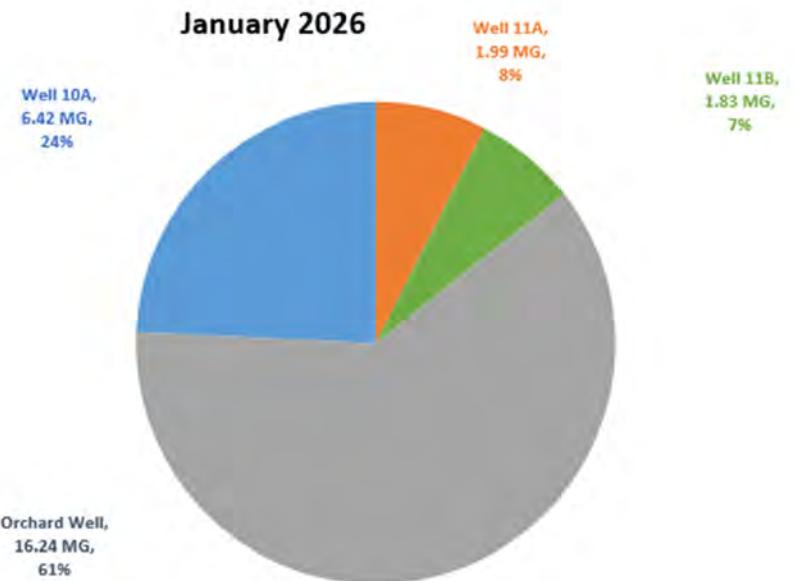
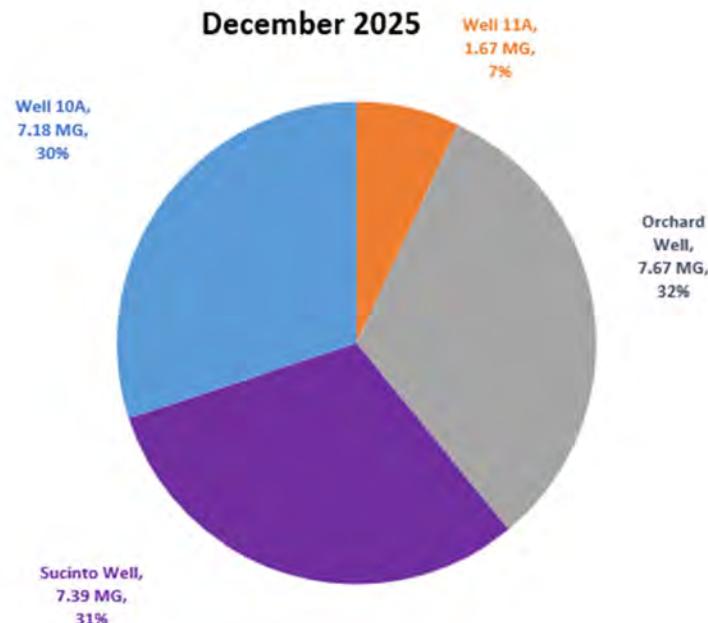
Vendor Name	Transaction Date	Description	Amount
A T & T	11/14/2025	Back-up Internet El Pueblo	\$ 107.00
A T & T	11/14/2025	Back-up Internet 2 Civic Ctr	107.00
ACWA	11/12/2025	ACWA 2025 Fall Conference - Perri	1198.00
ADOBE	11/11/2025	Adobe Licensing 11/11/25-12/10/25	287.88
AMAZON	11/4/2025	Computer Wire Organizer, Key for TP Dispenser	14.96
AMAZON	11/13/2025	Coffee Pods	114.09
AMAZON	11/13/2025	Cafe Escapes Chai Latte Pods	36.79
AMAZON	11/18/2025	Gel Mouse Pad - Ergonomic	10.85
COMCAST	11/23/2025	Internet El Pueblo 11/01/25 - 11/30/25	501.42
COMCAST	11/23/2025	Internet Civic Ctr 104/14/25-11/13/25	501.42
EL BUEN TACO	11/17/2025	Taco Truck - Holiday Party	958.13
EVO STUDIOS INC.	10/22/2025	Website Hosting / Maint	124.00
ICON CLOUD SOLUTIONS, LLC	11/21/2025	Phones - 2 Civic Ctr	420.14
MAILCHIMP	12/3/2025	Digital Marketing	116.00
MARRIOTT HOTELS	11/21/2025	Lodging - Jensen to Calperla Conference	274.68
NATIONAL RURAL WATER ASSOCIATION	11/20/2025	Annual Membership 10/1/25 - 9/30/26	49.00
PLANET ORANGE	11/13/2025	Pest Control El Pueblo	75.00
PLANET ORANGE	11/13/2025	Pest Control 2 Civic Ctr	110.00
TIMES PUBLISHING GROUP, INC	12/1/2025	Monthly Advertising	178.50
VERIZON WIRELESS	12/1/2025	Monthly Service Tablets 10/13/25 - 11/12/25	410.94
ZOOM	11/25/2025	Zoom Cloud Recording 11/25/25 - 12/24/25	40.00
Total			\$ 5,635.80
AMERICAN WATER WORKS ASSOCIATION	11/17/2025	AWWA Annual Dues	525.00
ASTRA CASES	11/7/2025	iPad Case - Urman	48.75
CARHARTT	11/1/2025	SVWD Clothing for Nate Gillespie	367.55
CARHARTT	11/8/2025	SVWD Clothing for Employees	923.88
CARHARTT	11/8/2025	SVWD Clothing for Carlos Flores	230.41
CARHARTT	11/14/2025	SVWD Clothing for Employees	384.08
CERTSTAFFIX TRAINING	12/17/2025	Excel - Level 1 Drew Carlson	295.00
CHESTNUT IDENTITY APPAREL	11/21/2025	Work Clothing	279.24
FORD ACCESSORIES	11/13/2025	Ford Fast Charging Adapter	230.42
SANTA CRUZ SIGNS	11/18/2025	Graphic Decal for F150 Lightning	241.08
SCHWAAB, INC	11/4/2025	Ink Pad for Stamper	20.81
TESLA INC	11/18/2025	Energy Fee	28.72
Total			\$ 3,574.94

Scotts Valley Water District

Investment Summary

As of 12/31/25

Institution	Investment	CUSIP	Purchased	Maturity	Purchase \$	Rate		Balance as of:	
						9/30/2025	12/31/2025	9/30/2025	12/31/2025
Unrestricted Funds:									
LAIF	Local Agency Investment Fund		various			4.34%	4.20%	\$ 4,922,062	\$ 4,975,800
CLASS	California CLASS Local Govt Investment Pool		various			4.27%	3.88%	\$ 844,859	\$ 853,481
WCCB	Checking - General		various			0.50%	0.50%	\$ 44,645	\$ 290,569
WCCB	Checking - Payroll		various			0.50%	0.50%	\$ 85,609	\$ 74,104
WCCB	Checking - Revenue		various			0.50%	0.50%	\$ 1,000,000	\$ 1,000,000
WCCB	IntraFi Savings		various			4.26%	4.15%	\$ 1,284,533	\$ 832,985
XBP	Checking - Revenue		various			0.00%	0.00%	\$ 406,239	\$ 238,397
US Bank	Checking - Investments		various			0.16%	0.16%	\$ 182,968	\$ 712,578
US Bank	Safekeeping - BofA CD - 2 Yr	06051V5X0	12/6/2023	12/8/2025	\$ 244,000	5.05%	5.05%	\$ 244,000	\$ -
US Bank	Safekeeping - SCE FCU CD - 2 Yr	78413RAG2	12/12/2023	12/12/2025	\$ 248,000	5.00%	5.00%	\$ 248,000	\$ -
US Bank	Safekeeping - Discover CD - 3 Yr	254676CHO	12/11/2023	12/11/2026	\$ 244,000	4.85%	4.85%	\$ 244,000	\$ 244,000
US Bank	Safekeeping - Greenwood MFCU CD - 3 Yr	39729LAK7	12/11/2023	12/11/2026	\$ 248,000	4.90%	4.90%	\$ 248,000	\$ 248,000
US Bank	Safekeeping - Morgan Stanley - 3 Yr	61690DSC3	6/5/2024	6/7/2027	\$ 246,000	4.90%	4.90%	\$ 246,000	\$ 246,000
US Bank	Safekeeping - Morgan Stanley Private - 3 Yr	61768E4S9	6/5/2024	6/7/2027	\$ 246,000	4.90%	4.90%	\$ 246,000	\$ 246,000
US Bank	Safekeeping - State Bank of India CD - 3 Yr	856288AM7	12/13/2024	12/13/2027	\$ 244,000	4.15%	4.15%	\$ 244,000	\$ 244,000
US Bank	Safekeeping - Celtic Bank CD - 3 Yr	15118RT31	12/20/2024	12/20/2027	\$ 249,000	4.05%	4.05%	\$ 249,000	\$ 249,000
Subtotal for Unrestricted Funds:						%		\$ 10,739,916	\$ 10,454,912

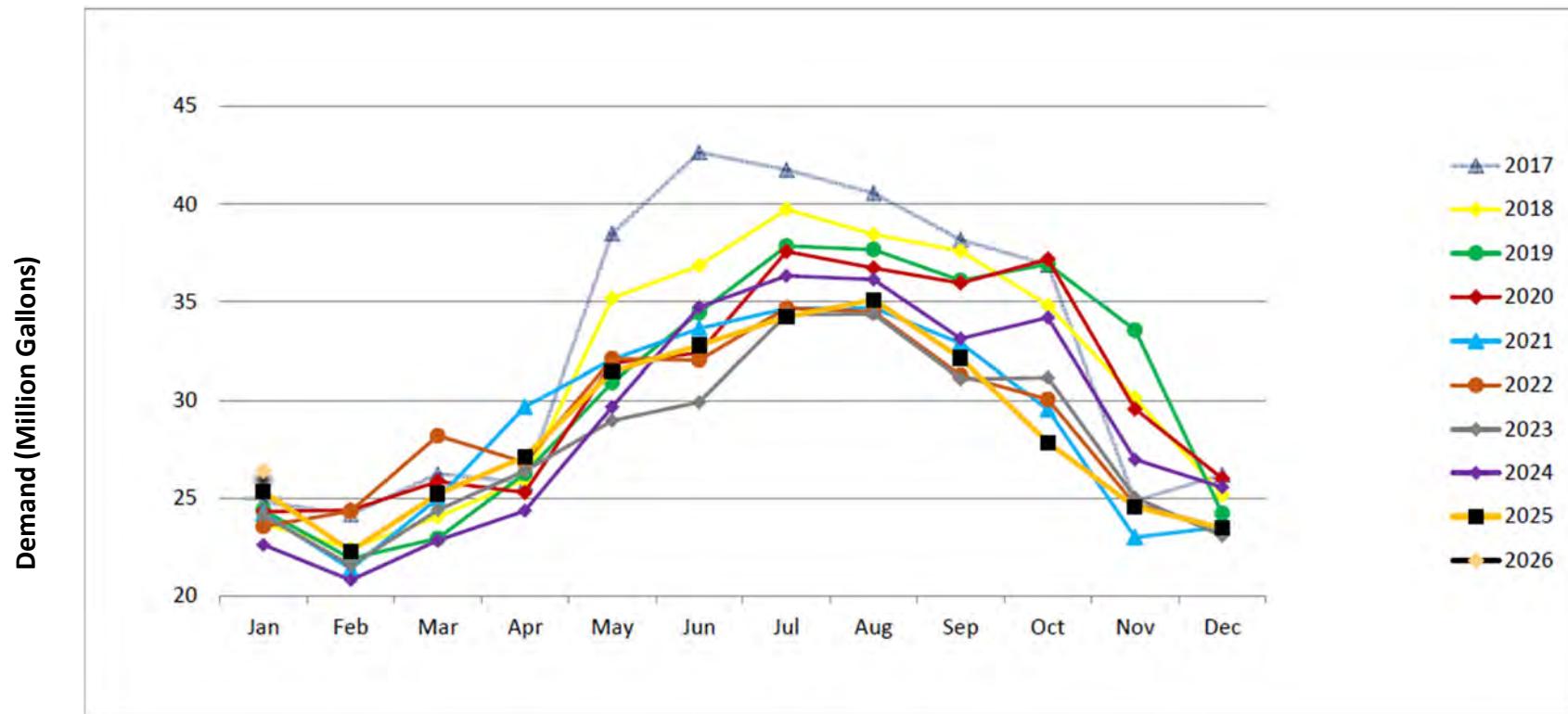


Weighted Average Yield

3.38%

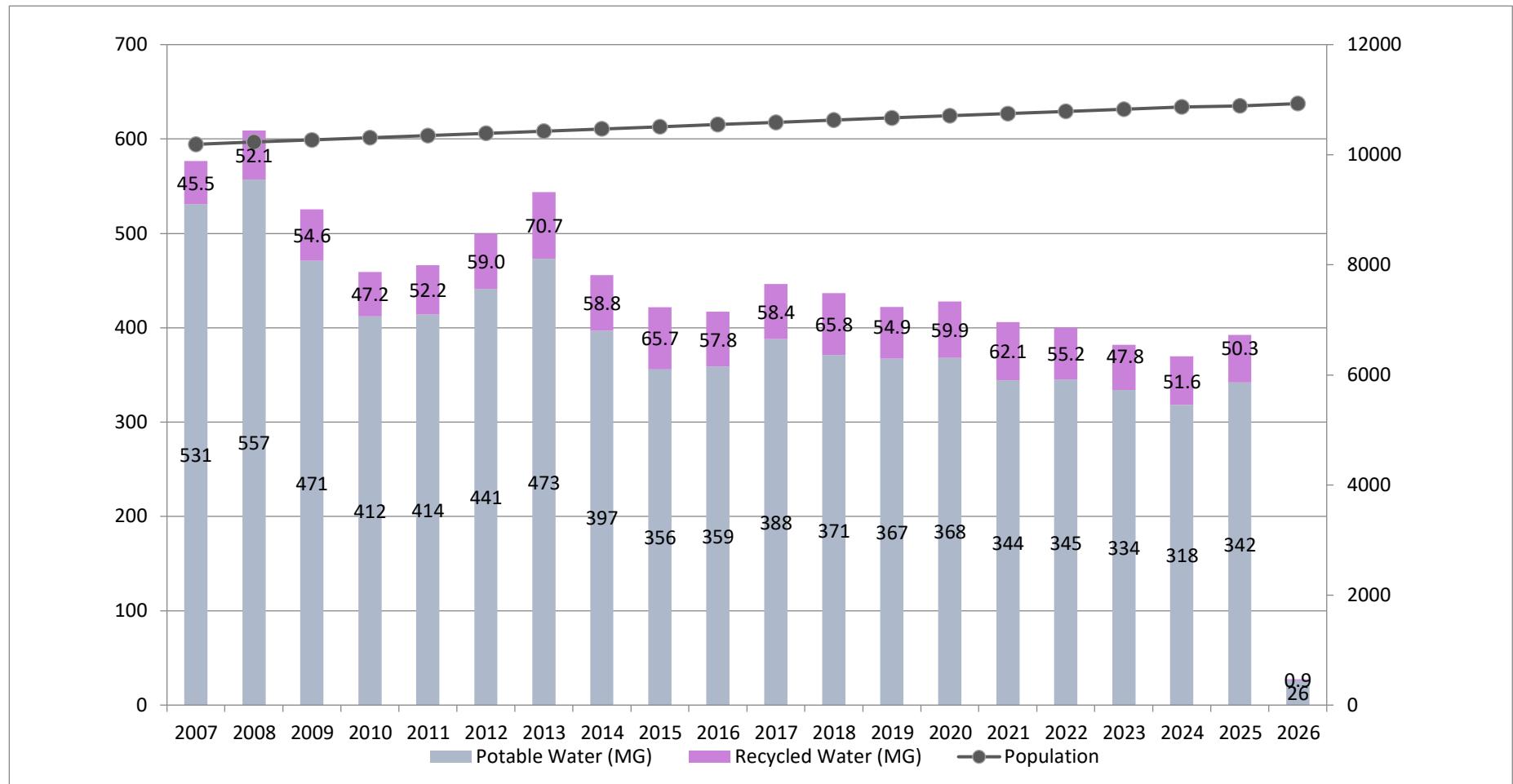
The current investments comply with the requirements of the Investment Policy (P200-14-1)

Sufficient cash is available to meet expected expenditure requirements for the next six months.

Well Production



Total Production (Million Gallons)


December 2025	23.91 MG	1.73 % decrease from November
January 2026	26.48 MG	10.75 % Increase from December

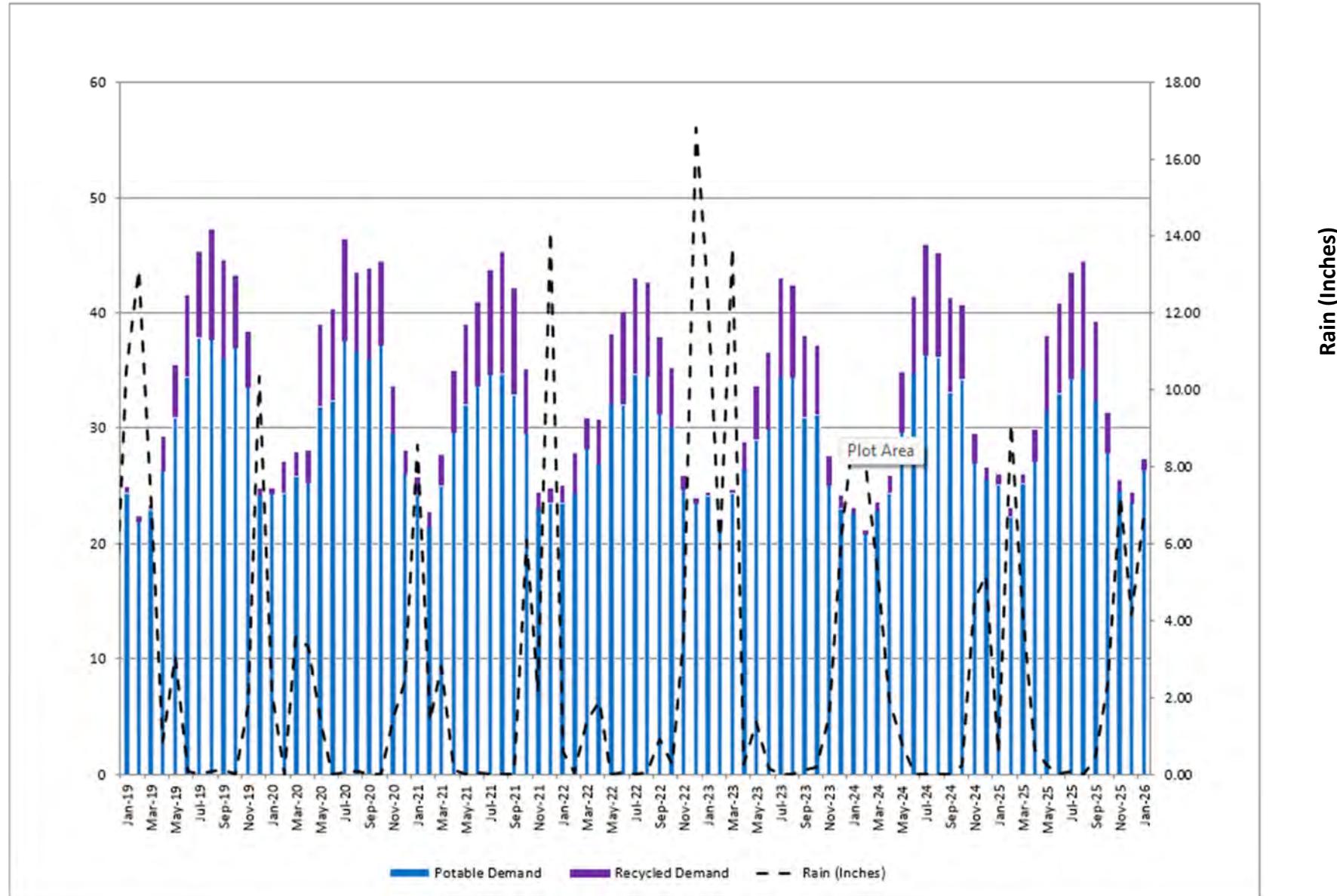
Production is Water Pumped +/- Water used for Well Maintenance Activities

Potable Water Demand

Demand is Production +/- Change in Storage

Potable and Recycled Water Demand

	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	Average
Jan.	23,085,736	24,789,618	23,674,051	24,378,894	24,319,853	24,231,996	23,549,899	24,119,305	22,612,521	25,356,317	26,393,710	24,228,355
Feb.	21,968,896	23,490,314	22,427,754	21,923,206	24,323,667	21,387,258	24,348,603	21,575,598	20,824,472	22,296,461		22,456,623
March	23,910,892	25,837,232	24,042,754	22,954,225	25,855,924	24,995,557	28,195,901	24,399,552	22,891,909	25,222,245		24,830,619
April	28,400,861	25,477,561	25,992,670	26,027,391	25,297,107	29,671,141	26,838,945	26,400,163	24,354,490	27,130,998		26,559,133
May	31,995,591	38,043,826	33,751,004	30,912,986	31,885,131	32,077,872	32,099,180	28,966,291	29,670,848	31,470,599		32,355,831
June	36,842,416	42,310,983	36,786,677	34,451,155	32,393,746	33,647,606	32,036,135	29,896,397	34,787,137	32,792,216		34,594,447
July	38,892,200	41,757,891	39,648,922	37,857,926	38,411,455	34,662,207	34,689,147	34,363,749	36,331,090	34,247,832		37,086,242
Aug.	38,541,952	39,982,246	38,720,060	37,666,598	36,637,898	34,701,240	34,501,423	34,386,798	36,149,775	35,111,038		36,639,903
Sept.	35,653,167	38,190,535	35,202,216	36,106,611	35,968,389	32,885,092	31,253,961	31,079,985	33,131,949	32,308,901		34,178,081
Oct.	30,517,556	36,888,905	34,746,760	36,940,853	37,193,525	29,533,005	30,045,717	31,153,726	34,206,132	27,846,463		32,907,264
Nov.	24,388,656	24,864,436	30,389,575	33,566,905	29,565,349	23,000,320	24,666,665	25,025,140	26,969,126	24,554,445		26,699,062
Dec.	24,379,124	26,194,926	25,160,789	24,225,007	26,013,773	23,538,533	23,479,712	23,072,563	25,556,859	23,480,921		24,510,221
Total	358,577,047	387,828,472	370,543,233	367,011,756	367,865,818	344,331,827	345,705,288	334,439,267	317,815,460	341,818,436	26,393,710	323,848,210


	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	Average
Jan.	862,984	156,267	838,172	493,100	450,147	1,560,234	1,416,939	257,000	487,999	901,105	875,474	754,493
Feb.	1,813,868	94,521	2,589,717	366,055	2,714,767	1,331,033	3,460,316	556,474	354,948	734,000		1,401,570
March	972,360	544,666	1,141,831	322,464	2,109,739	2,709,295	2,600,242	211,737	729,105	796,474		1,213,791
April	4,381,911	713,802	2,333,176	2,969,672	2,737,245	5,249,782	3,856,106	2,324,685	1,454,527	2,759,578		2,878,048
May	6,909,436	7,908,386	7,306,666	4,584,239	7,142,605	6,914,742	6,081,095	4,632,368	5,225,680	6,539,580		6,324,480
June	9,639,221	8,940,094	9,739,276	7,067,867	7,971,453	7,319,935	8,066,685	6,663,896	6,566,276	7,765,052		7,973,976
July	10,841,389	10,981,309	10,744,706	9,461,005	8,810,329	8,995,659	8,277,840	8,655,000	9,618,930	9,174,337		9,556,050
Aug.	8,767,020	9,618,897	10,078,073	9,594,307	6,760,659	10,595,314	8,072,792	7,955,736	8,956,104	9,318,159		8,971,706
Sept.	8,287,511	7,957,562	7,522,571	8,451,961	7,814,358	9,281,685	6,569,246	6,989,264	8,205,474	6,945,167		7,802,480
Oct.	3,956,097	7,557,695	6,967,548	6,228,883	7,236,784	5,554,683	5,155,789	5,948,841	6,463,211	3,466,944		5,853,648
Nov.	1,053,779	2,234,592	5,514,338	4,805,871	4,087,453	1,364,789	1,171,421	2,567,105	2,515,211	955,000		2,626,956
Dec.	529,158	1,670,966	994,336	544,650	2,075,116	1,282,474	504,442	1,096,264	1,044,211	898,000		1,063,962
Total	58,014,734	58,378,757	65,770,410	54,890,074	59,910,655	62,159,624	55,232,913	47,858,370	51,621,675	50,253,396	875,474	51,360,553

Demand is Production +/- the Change in Storage

Potable and Recycled Water Demand vs. Rainfall

Demand is Production +/- the Change in Storage

Demand (Million Gallons)

Rainfall
El Pueblo Weather Station

WATER YEAR		Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	June	Jul	Aug	Sep	TOTAL	% of Avg.
High Year	1981-82	0.14	11.20	5.90	28.80	6.88	8.26	8.40	0.03	0.00	0.00	0.04	1.28	70.93	175%
	1982-83	5.35	10.50	7.74	13.90	18.00	19.90	7.80	0.98	0.00	0.00	0.17	1.91	86.25	213%
	1983-84	1.70	12.70	12.90	0.54	2.49	2.62	1.13	0.02	0.18	0.01	0.00	0.25	34.54	85%
	1984-85	2.80	13.80	2.95	1.72	4.20	7.92	0.73	0.11	0.15	0.09	0.02	0.54	35.03	86%
	1985-86	1.12	7.14	2.62	7.38	22.40	15.00	0.48	0.83	0.00	0.00	0.00	1.30	58.27	144%
	1986-87	0.03	0.05	2.47	4.51	9.06	6.31	0.70	0.00	0.02	0.00	0.00	0.00	23.15	57%
	1987-88	1.19	2.30	10.70	4.58	0.68	0.00	3.13	1.07	0.16	0.00	0.00	0.00	23.81	59%
	1988-89	0.19	5.90	8.89	2.06	1.39	10.60	0.67	0.08	0.03	0.00	0.03	0.83	30.67	76%
	1989-90	3.53	1.58	0.01	3.42	3.69	2.13	0.16	5.79	0.00	0.00	0.12	0.15	20.58	51%
	1990-91	0.50	0.24	1.65	0.61	5.39	17.19	0.51	0.06	0.40	0.00	0.02	0.07	26.64	66%
Low Year	1991-92	2.37	1.46	5.42	3.03	15.30	4.65	0.45	0.00	0.82	0.00	0.05	0.00	33.55	83%
	1992-93	3.41	0.20	11.54	18.51	10.22	3.17	1.37	0.96	0.68	0.00	0.00	0.00	50.06	124%
	1993-94	0.73	2.74	5.52	3.51	9.72	0.68	2.75	2.10	0.01	0.00	0.00	0.05	27.81	69%
	1994-95	1.79	8.29	4.78	23.88	0.65	13.62	3.79	0.89	1.04	0.01	0.00	0.00	58.74	145%
	1995-96	0.00	0.32	10.03	13.52	11.35	5.14	2.38	4.31	0.03	0.00	0.00	0.00	47.08	116%
	1996-97	2.89	6.95	22.43	12.33	0.17	1.50	0.58	0.16	0.12	0.00	0.54	0.00	47.67	118%
	1997-98	0.68	10.12	4.06	14.21	21.81	6.17	2.85	3.65	0.01	0.00	0.01	0.17	63.74	157%
	1998-99	1.02	9.11	1.85	9.25	11.08	5.22	2.58	0.03	0.36	0.00	0.02	0.14	40.66	100%
	1999-00	0.35	5.69	0.53	18.02	17.57	2.77	2.69	1.01	0.18	0.00	0.20	0.40	49.41	122%
	2000-01	5.14	1.38	0.94	8.68	10.65	4.05	2.67	0.00	0.07	0.00	0.00	0.16	33.74	83%
Low Year	2001-02	1.13	9.93	16.45	4.97	2.69	4.66	0.52	0.90	0.00	0.00	0.05	0.00	41.30	102%
	2002-03	0.00	5.80	21.40	2.77	2.95	2.54	5.75	1.09	0.16	0.00	0.00	0.00	42.46	105%
	2003-04	0.19	3.93	17.55	4.44	9.69	1.19	0.65	0.07	0.00	0.06	0.00	0.11	37.88	93%
	2004-05	7.24	3.25	14.39	8.30	7.20	10.01	3.79	2.13	0.94	0.02	0.00	0.08	57.35	142%
	2005-06	0.19	2.84	21.73	6.55	5.26	15.29	10.44	1.01	0.01	0.00	0.01	0.00	63.33	156%
	2006-07	0.25	3.30	5.67	0.89	9.24	0.30	2.17	0.46	0.00	0.10	0.01	0.33	22.72	56%
	2007-08	1.93	0.52	5.50	17.59	6.96	0.36	0.35	0.00	0.00	0.01	0.00	0.04	33.26	82%
	2008-09	1.59	4.80	4.38	1.80	15.28	3.47	0.52	1.42	0.01	0.00	0.00	0.26	33.53	83%
	2009-10	9.70	0.33	5.21	11.37	8.66	4.35	5.41	1.17	0.00	0.01	0.07	0.00	46.28	114%
	2010-11	3.92	5.13	15.36	1.97	10.59	13.40	0.75	3.42	3.40	0.00	0.04	0.02	58.00	143%
Low Year	2011-12	2.93	3.41	0.15	6.80	2.75	11.97	4.09	0.02	0.20	0.02	0.00	0.02	32.36	80%
	2012-13	1.61	11.32	13.25	1.31	0.47	2.66	0.43	0.01	0.11	0.00	0.00	0.70	31.87	79%
	2013-14	0.01	0.87	0.78	0.05	11.52	4.02	2.02	0.01	0.02	0.09	0.01	0.92	20.32	50%
	2014-15	0.44	4.36	16.52	0.00	4.69	0.47	2.13	0.19	0.04	0.00	0.03	0.02	28.89	71%
	2015-16	0.07	2.54	6.67	16.20	1.16	14.26	1.18	0.35	0.00	0.00	0.00	0.22	42.65	105%
	2016-17	8.66	3.29	10.77	26.13	19.56	7.09	4.47	0.06	0.07	0.00	0.00	0.04	80.14	198%
	2017-18	0.10	4.02	0.08	6.43	0.56	10.07	2.85	0.01	0.13	0.01	0.00	0.00	24.26	60%
	2018-19	0.08	5.24	3.72	10.49	13.11	6.91	0.86	3.07	0.07	0.00	0.07	0.10	43.72	108%
	2019-20	0.00	1.76	8.57	2.14	0.01	3.59	3.31	1.37	0.02	0.05	0.06	0.02	20.90	52%
	2020-21	0.00	1.48	2.40	8.55	1.39	2.81	0.11	0.00	0.04	0.00	0.00	0.00	16.78	41%
Cumulative 2025-2026		2.32	9.54	13.71	20.47									46.04	
Monthly Avg. 1981-2025		1.87	4.64	8.00	8.01	7.72	6.43	2.37	0.95	0.22	0.01	0.04	0.26	40.52	
Cumulative Avg. 1981-2025		1.87	6.51	14.51	22.52	30.24	36.67	39.03	39.99	40.21	40.22	40.26	40.52	40.52	

MONTHLY

REGULATORY ROUNDUP

ACWA

FEBRUARY 2026

UPCOMING ACWA EVENTS

ACWA LEGISLATIVE SYMPOSIUM

ACWA will host its 2026 Legislative Symposium on February 11 from 1:00 – 5:00 pm in Sacramento. Register [here](#) to attend.

ACWA DC 2026 CONFERENCE

ACWA will host its DC 2026 Conference February 24-26 in Washington DC. Space is limited - register [here](#) to attend.

ACWA QUARTERLY POLICY COMMITTEE MEETINGS

ACWA's next Quarterly Policy Committee Meetings will be held virtually on March 12 from 9:00 am – 4:00 pm. Register [here](#) to attend any or all of the meetings. The schedule includes:

9:00 AM – 9:30 AM	Welcome & ACWA Updates
9:30 AM – 10:30 AM	Water Management Committee
10:45 AM – 11:45 AM	Groundwater Committee
12:15 PM – 1:15 PM	Water Quality Committee
1:30 PM – 2:30 PM	Agriculture Committee
2:45 PM – 3:45 PM	Energy Committee

POLICY UPDATES

FEDERAL

ACWA's Federal Regulatory Issues chart is accessible [here](#).

WATER MANAGEMENT

PRIORITY Bay-Delta Plan – Sacramento/ Delta Update

- On December 12, the State Water Resources Control Board (State Water Board) announced a [Notice of Limited Recirculation and Notice of Availability and Opportunity for Public Comment and Hearing on Revised Draft Sacramento/Delta Updates to the Water Quality Control Plan for the San Francisco Bay/Sacramento-San Joaquin Delta Watershed \(Bay-Delta Plan\) and Supporting Draft Staff Report](#). The State Water Board held a public hearing in late January to discuss the revised draft Sacramento/Delta updates to the Bay-Delta Plan and Chapter 13 of the draft Staff Report.
 - Written comments due: February 2

Staff Contact

Stephen Pang
stephenp@acwa.com

Delta Conveyance Project

- On December 4, the State Water Board announced a [Ninth Amended Notice of Public Hearing and Procedural Ruling](#). The purpose of the hearing is to gather evidence that the State Water Board will consider to determine whether to approve change petitions filed by the Department of Water Resources (DWR) to add two new points of diversion and rediversion for the State Water Project.

Staff Contact

Stephen Pang
stephenp@acwa.com

<ul style="list-style-type: none"> ○ Public hearings: February 20, 23, 24, 25, March 2, 5, and 6 at 9:00 am 	
<p>Electronic Annual Reporting</p> <ul style="list-style-type: none"> • On January 20, the State Water Board announced the availability of the reporting year (RY) 2025 electronic Annual Report (eAR). All public water systems are required to complete an eAR under the January 2025 Technical Reporting Order. The RY 2025 reporter excel worksheet is now available. <ul style="list-style-type: none"> ○ RY 2025 due: April 1 ○ Reporter excel worksheet 	<p>Staff Contact Amber Rossow amberr@acwa.com</p>
<p>Fees: 2026 Drinking Water, Water Quality, and Water Rights</p> <ul style="list-style-type: none"> • The State Water Board is holding a series of stakeholder meetings to discuss drinking water, water quality, and water rights fees. <ul style="list-style-type: none"> ○ Water Quality: March 5 at 9:00 am ○ Water Rights: March 5 at 1:00 pm ○ Drinking Water: March 6 at 9:00 am 	<p>Staff Contact Stephen Pang stephenp@acwa.com Nick Blair nickb@acwa.com</p>
<p>Indoor Residential Water Use</p> <ul style="list-style-type: none"> • A study is currently being developed by a multi-university team to evaluate indoor residential water use and quantify impacts of lower indoor residential water use. To inform the study, the University of California Institute for Water Resources is conducting and circulating three surveys specific to collection systems, treatment facilities, and water reuse/recycle facilities. <ul style="list-style-type: none"> ○ Working group public meeting: February 2 ○ Survey deadline: February 28 	<p>Staff Contact Amber Rossow amberr@acwa.com</p>
<p>Leak Data Registry</p> <ul style="list-style-type: none"> • On December 15, the State Water Board released the Leak Registry Data Specifications Version 2.0 which finalizes the data standards required for the upcoming statewide leak registry. Systems must begin collecting all required information for repaired leaks starting July 1. 	<p>Staff Contact Amber Rossow amberr@acwa.com</p>
<p>Water Measurement and Reporting Regulations</p> <ul style="list-style-type: none"> • On December 2, the State Water Board adopted Revisions to Water Measurement and Reporting Regulations that clarify requirements, standardize measurement data reporting, and align regulations with new water right reporting systems. Chapters 2 and 2.7 of Title 23 are now in effect. <ul style="list-style-type: none"> ○ Chapter 2.8 expected effective date: October 1 	<p>Staff Contact Stephen Pang stephenp@acwa.com</p> <div data-bbox="1111 1438 1269 1495"> </div>
<p>Water Recycling Proposition 4 Funding</p> <ul style="list-style-type: none"> • On January 21, the State Water Board adopted Emergency Regulations to administer the \$150 million of Proposition 4 funds appropriated by the Budget Act of 2025 for water recycling funding. 	<p>Staff Contact Amber Rossow amberr@acwa.com</p>
<p>AGRICULTURE</p> <p>Statewide Agricultural Expert Panel</p> <ul style="list-style-type: none"> • On January 23, the State Water Board released a Notice of Public Working Group Meetings for the Second Statewide Agricultural Expert Panel (Panel) for the Irrigated Lands Regulatory Program. The meetings 	<p>Staff Contact Stephen Pang stephenp@acwa.com</p>

<p>will facilitate deliberations on issues relevant to the Panel charge questions.</p> <ul style="list-style-type: none"> ○ Public working group meeting: February 11 at 3:00 pm 	
GROUNDWATER	
<p>PRIORITY Final Land Subsidence Best Management Practices</p> <ul style="list-style-type: none"> ● On January 21, DWR released the Final Land Subsidence Best Management Practices (BMP) document. The document aims to help local water agencies address the growing concerns over land subsidence and support groundwater reliant communities. 	<p>Staff Contact Soren Nelson sorenn@acwa.com</p>
<p>State Intervention: Kaweah Subbasin</p> <ul style="list-style-type: none"> ● On December 2, the State Water Board approved a resolution to return the Kaweah Groundwater Subbasin (Subbasin) to DWR's jurisdiction under SGMA. Following the State Water Board meeting, amended groundwater sustainability plans (GSPs) were submitted to DWR for review of the Subbasin and a 75-day public comment period opened. <ul style="list-style-type: none"> ○ Public comments due: March 30 	<p>Staff Contact Soren Nelson sorenn@acwa.com</p>
<p>State Intervention: Kern County Subbasin</p> <ul style="list-style-type: none"> ● On December 8, the State Water Board announced its decision to return the Kern County Subbasin to DWR under SGMA. 	<p>Staff Contact Soren Nelson sorenn@acwa.com</p>
WATER QUALITY	
<p>Cross-Connection Control Policy Handbook</p> <ul style="list-style-type: none"> ● On January 16, the State Water Board announced Proposed Changes to the Cross-Connection Control Policy Handbook (CCCPH). The State Water Board is proposing changes to the CCCPH in regards to accreditation of certifying organizations and backflow prevention at existing auxiliary water supplies. <ul style="list-style-type: none"> ○ Written comments due: February 19 ○ Verbal comments: February 19 at 2:00 pm 	<p>Staff Contact Nick Blair nickb@acwa.com</p>
<p>Impacts of Sackett v. Environmental Protection Agency (2023) Report</p> <ul style="list-style-type: none"> ● On January 5, the State Water Board published the Impacts of United States Supreme Court's Decision in Sackett v. Environmental Protection Agency (2023) 598 U.S. 651 (Report). The Report addresses the <i>Sackett</i> ruling and its alteration of the regulatory landscape for water quality protection in California. 	<p>Staff Contact Soren Nelson sorenn@acwa.com</p>
<p>National Pollutant Discharge Elimination System</p> <ul style="list-style-type: none"> ● On January 9, the State Water Board released a Notice of Opportunity to Comment on Proposed Approval of an Amendment to the Statewide General National Pollutant Discharge Elimination System Permit for Biological Pesticides and Residual Chemical Pesticide Discharges to Waters of the United States from Aquatic Animal Invasive Species Control Applications (Proposed Amendment). The Proposed Amendment is to revise the list of approved entities granted a categorical exception to include Casitas Municipal Water District. <ul style="list-style-type: none"> ○ Public comments due: February 10 at 12:00 pm 	<p>Staff Contact Amber Rossow amberr@acwa.com</p>
<p>State Revolving Fund</p>	<p>Staff Contact Nick Blair</p>

<ul style="list-style-type: none"> On January 16, the State Water Board updated the 2026-26 Drinking Water State Revolving Fund Intended Use Plan (DWSRF IUP) Fundable List of Projects (List). The updated List includes all projects that the State Water Board may approve for funding. 	nickb@acwa.com
<p>State Revolving Fund Environmental Package Requirements</p> <ul style="list-style-type: none"> On December 29, the State Water Board released a Notice of Public Webinars relating to Funding Programs Environmental Package (EP) Guidance. The webinars will focus on the EP requirements for the State Water Board's funding programs, including the Clean Water and Drinking Water State Revolving Funds (CWSRF and DWSRF). <ul style="list-style-type: none"> Public webinar: February 12 at 1:00 pm 	<p>Staff Contact Nick Blair nickb@acwa.com</p>
<p>Surface Water Quality Assessment</p> <ul style="list-style-type: none"> On January 23, the State Water Board released the First Revised Proposed Final Staff Report on the 2026 California Integrated Report – Surface Water Quality Assessments to Comply with Clean Water Act Sections 303(d) and 305(b) (Report). The Report identifies waters of the United States that do not or are not expected to meet water quality standards by the next listing cycle and are submitted to the United States Environmental Protection Agency for prioritization and approval. <ul style="list-style-type: none"> Board adoption meeting: February 3 at 9:00 am 	<p>Staff Contact Amber Rossow amberr@acwa.com</p>
<p>Water Quality Management Planning Grant</p> <ul style="list-style-type: none"> On January 20, the State Water Board announced a Solicitation for Clean Water Act Section 205(J) Water Quality Planning Project Proposals. The grants are intended to support water quality planning and assessment activities that identify plans, data, and analyses needed for water quality problems. <ul style="list-style-type: none"> Funding applications <u>due</u>: February 20 	<p>Staff Contact Amber Rossow amberr@acwa.com</p>
<p>ENERGY</p> <p>Bioenergy Feed-In Tarriff Program</p> <ul style="list-style-type: none"> The California Public Utilities Commission (CPUC) Bioenergy Feed-In Tarriff Program (BioMAT) expired on December 31, 2025. CPUC withdrew the Proposed Decision (PD) to formally end BioMAT from the January 15 Voting Meeting, and has not yet re-scheduled the PD to be heard at a future meeting. 	<p>Staff Contact Nick Blair nickb@acwa.com</p>
<p>California Energy Demand Forecast</p> <ul style="list-style-type: none"> On January 21, the California Energy Commission (CEC) adopted the California Energy Demand Forecast 2025-2045 (IEPR forecast). The IEPR forecast provides electricity and gas demand forecasts for California and serves as key input for planning and procurement efforts, including transmission and distribution system planning, and resource adequacy assessments. 	<p>Staff Contact Nick Blair nickb@acwa.com</p>
<p>Carl Moyer Program Guidelines</p> <ul style="list-style-type: none"> On February 26, the California Air Resources Board (CARB) will host its first workshop to update the Carl Moyer Program Guidelines. The Carl Moyer Program provides grants that fund up to the incremental cost of cleaner-than-required engines, whether equipment or vehicles, and 	<p>Staff Contact Nick Blair nickb@acwa.com</p>

<p>emission reduction technology. The projects, except for infrastructure projects, must yield emission reductions above and beyond, or before, what is required by regulation and are constrained by cost-effectiveness limits for projects meeting the required emission standard, an optional advanced technology standard, or a zero-emission standard.</p> <ul style="list-style-type: none"> ○ Public Workshop: February 26 at 1:30pm 	
<p>Clean Truck and Bus Voucher Incentive Project</p> <ul style="list-style-type: none"> ● On December 16, CARB re-opened the Clean Truck and Bus Voucher Incentive Project for voucher request applications following updates to the FY 2024-25 Implementation Manual that updated voucher eligibility and requirements. 	<p>Staff Contact Nick Blair nickb@acwa.com</p>
<p>Clean Transportation Program- Medium- and Heavy-Duty On-Road Zero-Emission Vehicle Infrastructure Grants</p> <ul style="list-style-type: none"> ● On January 7, CEC's Clean Transportation Program released Addendum 5 of Depot Charging and Hydrogen Refueling Infrastructure for Medium- and Heavy-Duty On-Road Zero-Emission Vehicles (Addendum 5). Addendum 5 includes revisions to the solicitation manual for the grant solicitation for projects that will fund the deployment of depot charging and hydrogen refueling infrastructure for medium- and heavy-duty on-road zero-emission vehicles. <ul style="list-style-type: none"> ○ Applications <u>due</u>: March 20 at 11:59 pm ● On January 7, the California Energy Commission's Clean Transportation Program also released Addendum 07 of Implementation of Medium- and Heavy-Duty Zero-Emission Vehicle Infrastructure Blueprints 2.0 (Addendum 7). The Addendum includes revisions to the solicitation manual for the Clean Transportation Program's grant solicitation for projects that will implement medium- and heavy-duty zero-emission vehicle charging or hydrogen refueling infrastructure projects. <ul style="list-style-type: none"> ○ Applications <u>due</u>: March 20 at 11:59 pm 	<p>Staff Contact Nick Blair nickb@acwa.com</p>

To receive a monthly email of Regulatory Roundup, please contact [Karla Cardenas](#). Regulatory Roundup is also available on ACWA's [website](#).

Indicates ACWA Working Group

Indicates ACWA Priority Issue

County of Santa Cruz

Health Services Agency - Environmental Health

701 Ocean Street, Room 312, Santa Cruz, CA 95060
 (831) 454-2022 TDD/TTY - Call 711 <http://www.scceh.org>
EnvironmentalHealth@santacruzcountyca.gov

January 21, 2026

Interested Parties

Re: Public Notice of Completion of Remedial Goals; Former Sky Park Airport City of Santa Cruz Property (GeoTracker Global ID T10000018739; APNs 022-721-07, 08, and -09) and Former Sky Park Airport City of Scotts Valley Property (GeoTracker Global ID T10000018740; APNs 022-212-19, 022-601-01, and 022-721-06); Kings Village Road and Mount Hermon Road, Scotts Valley, California

The Santa Cruz County Environmental Health Division (EHD) is the local agency authorized by the California Central Coast Regional Water Quality Control Board (CCRWQCB) and the California Department of Toxic Substances Control (DTSC) to oversee investigation and cleanup of waste releases in Santa Cruz County. EHD provides regulatory oversight to ensure that releases of hazardous materials are fully evaluated and that remedial actions meet applicable human-health and environmental standards.

The City of Scotts Valley, as the responsible party (RP for the above-identified properties, has completed the required site investigation and cleanup activities for the Scotts Valley Town Center parcels in accordance with State and local regulatory requirements and consistent with California Health and Safety Code Section 101480(j).

Environmental investigations conducted between 2014 and 2023 identified shallow soil impacts attributable to historical operations at the former Scotts Valley Airport, including runway grading and use of the former contractor storage and RV/boat yard areas. Arsenic was detected in shallow soils at concentrations exceeding the site-specific background level in portions of the former runway area, and localized lead and diesel-range petroleum hydrocarbons (TPHd) were detected above residential screening levels in the contractor yard and RV/boat storage areas. Soil vapor sampling across the project area also identified residual benzene and tetrachloroethylene (PCE) at concentrations exceeding residential and commercial/industrial screening levels. The PCE detections were determined to be associated with a regional groundwater plume originating from an upgradient off-site source, while benzene concentrations were attributed to historical on-site activities. A perched grab-groundwater sample contained low-level petroleum hydrocarbons; however, subsequent borings were dry, indicating no sustained groundwater impact beneath the site. The combined investigation results confirm that

Former Sky Park Airport City of Santa Cruz Property and

Former Sky Park Airport City of Scotts Valley Property

January 21, 2026

Page 2 of 4

shallow soil impacts were limited to historical on-site activities, whereas deeper vapor-phase volatile organic compounds (VOCs) correspond to regional off-site conditions.

To address the identified shallow soil impacts, the RP completed a remedial excavation program under EHD oversight, consistent with the RP's *Remedial Excavation Work Plan* and the *Site Management, Safety, and Dust Monitoring Plan* for which EHD provided its concurrence. Impacted soil containing arsenic, lead, and TPHd above cleanup goals was delineated and removed from all affected parcels. Approximately 1,400 tons of impacted soil were transported off-site for proper disposal, and post-excavation verification confirmed that residual shallow soil meets residential direct-exposure criteria. Although benzene and PCE in soil vapor continue to exceed applicable screening levels, no enclosed structures are presently located on-site, and these subsurface vapor-phase impacts do not pose a current risk under existing land use conditions. To ensure protection of future occupants, Land Use Covenants (LUCs) have been recorded for the parcels to document the presence of residual VOCs and to require the submittal of a *Soil Vapor Management Plan* to EHD for review and concurrence prior to initiating any site development activities. This requirement ensures that appropriate vapor intrusion mitigation measures will be incorporated into future building designs.

Based on the completed investigations, the removal of shallow soil impacts to concentrations protective of residential land use, and the implementation of enforceable institutional controls to manage remaining subsurface vapor conditions during future redevelopment, EHD has determined that the required remedial actions have been satisfactorily completed. EHD is therefore issuing this public notice to inform the community and interested stakeholders that the Scotts Valley Town Center case is being considered for conditional case closure, contingent upon adherence to all requirements specified in the recorded LUCs during future site development.

Please provide your comments or concerns regarding closure of this environmental cleanup case to our office by February 21, 2026. It is not necessary to respond if you have no comments.

To view project information for this site, visit the State Water Resources Control Board's GeoTracker database at <https://geotracker.waterboards.ca.gov/> or via the QR code below. The information is maintained across two project identifiers; search for:

- "Former Sky Park Airport City of Santa Cruz Property" or "T10000018739," and
- "Former Sky Park Airport City of Scotts Valley Property" or "T10000018740."

Former Sky Park Airport City of Santa Cruz Property and
Former Sky Park Airport City of Scotts Valley Property
January 21, 2026
Page 3 of 4

We have also enclosed the draft Certification of Completion of Remedial Goals Summary Form to provide additional information on the case investigation and cleanup. If you have questions, wish to obtain additional information, or would like to provide comments, please contact John Gerbrandt at the above address, (831) 454-2731, or John.Gerbrandt@santacruzcountyca.gov.

Sincerely,

—DocuSigned by:

Andrew Strader

88F018C895E447B...

Andrew Strader, REHS
Director of Environmental Health

Enclosed: Draft Certification of Completion of Remedial Goals Summary Form

Former Sky Park Airport City of Santa Cruz Property and

Former Sky Park Airport City of Scotts Valley Property

January 21, 2026

Page 4 of 4

cc: Greg Bishop, Senior Engineering Geologist, Site Cleanup Program Manager,
CCRWQCB (Greg.Bishop@waterboards.ca.gov)

Nicole Yuen, Hazardous Substances Engineer / Berkeley Brownfields Coordinator
Site Mitigation and Restoration Program, DTSC (Nicole.Yuen@dtsc.ca.gov)

Julie Johnson, SWRCB (Julie.Johnson@waterboards.ca.gov)

Andrew Strader, Director of Environmental Health, EHD
(Andrew.Strader@santacruzcounty.us)

Jean Nguyen, Hazardous Materials Program Manager, EHD
(Jean.Nguyen@santacruzcountyca.gov)

John B. Gerbrandt, Project Geologist, EHD
(John.Gerbrandt@santacruzcountyca.gov)

Jered Chaney, Senior Geologist, President / CEO, Weber, Hayes & Associates
(jered@weber-hayes.com)

Shaun Ersoy, Staff Scientist, Weber, Hayes & Associates
(shaun@weber-hayes.com)

Owners and occupants of adjacent properties have been copied

Government agencies with authority to issue building permits for land affected by
the waste release have been copied

Municipal and county water districts, water replenishment districts, and special
act districts with groundwater management authority have been copied

County of Santa Cruz

Health Services Agency - Environmental Health

701 Ocean Street, Room 312, Santa Cruz, CA 95060
 (831) 454-2022 TDD/TTY - Call 711 <http://www.scceh.org>
EnvironmentalHealth@santacruzcountyca.gov

Environmental Cleanup Program Certification of Completion of Remedial Goals Summary Form

I. Agency Information

Agency Name: Santa Cruz County Environmental Health	Caseworker: John B. Gerbrandt
Address: 701 Ocean Street, Room 312	City/State/Zip: Santa Cruz, CA 95060
Email: John.Gerbrandt@santacruzcountyca.gov	Phone: (831) 454-2022

II. Case Information

Site Facility Name: Former Sky Park Airport City of Santa Cruz Property / City of Scotts Valley Property	GeoTracker ID: T10000018739 / T10000018740
Assessor Parcel No.:	Local Agency Case No.: RO0000403 / RO0000404
Site Facility Address: Kings Village Road and Mount Hermon Road	City/State/Zip: Scotts Valley, CA 95066
Responsible Party: City of Scotts Valley	
Address: 1 Civic Center Drive	City/State/Zip: Scotts Valley, CA 95066
Email: kpowell@loganpowell.com	Phone: (831) 440-5604
Property Owner (if different than Responsible Party):	
Address: N/A	City/State/Zip: N/A
Email: N/A	Phone: N/A

III. Release and Site Characterization Information

Cause and type of release: Investigations from 2014–2023 found limited shallow soil impacts at the former Scotts Valley Airport, with arsenic above background in runway soils and localized lead, diesel-range total petroleum hydrocarbons (TPHd), and benzene from past on-site uses; tetrachloroethylene (PCE) in soil vapor reflects an off-site plume. A perched water sample showed minor petroleum contamination, but no sustained groundwater impact.				
Was source removed to extent practical? Yes <input checked="" type="checkbox"/> No <input type="checkbox"/>		Site characterization complete? Yes <input checked="" type="checkbox"/> No <input type="checkbox"/>		
Monitoring Wells installed? Yes <input type="checkbox"/> No <input checked="" type="checkbox"/>	Number: N/A	Proper screen interval? Yes <input type="checkbox"/> No <input type="checkbox"/> N/A		
Highest GW depth below ground surface (ft.):	Lowest:	Predominant Flow Direction:		
Most Sensitive Current GW use: None				
Are Water Wells affected? Yes <input type="checkbox"/> No <input checked="" type="checkbox"/>	Hydrologic Unit: Carbonera Creek-San Lorenzo River (180600150203) and Zayante Creek-San Lorenzo River (180600150202)			
Is the Site on Municipal Water? Yes <input checked="" type="checkbox"/> No <input type="checkbox"/>	If Yes, Name of Water System: Scotts Valley Water District			
Distance to nearest Water Well(s) (ft.): ~200 feet southwest	Well Type/Status: Municipal / Active			
Distance to nearest Surface Water(s) (ft.): 800 feet	Has Surface Water(s) been affected? Yes <input type="checkbox"/> No <input checked="" type="checkbox"/>			
Off-site Beneficial use impacts (addresses/locations): N/A				
Has the Vapor Intrusion Pathway been evaluated? Yes <input checked="" type="checkbox"/> No <input type="checkbox"/>				
Soil Gas Wells Installed? Yes <input checked="" type="checkbox"/> No <input type="checkbox"/>	Number: 21			
Conceptual Site Model (CSM) complete? Yes <input checked="" type="checkbox"/> No <input type="checkbox"/>	Date of CSM: Multiple document submittals.			

IV. Remediation or Mitigation Methods

Shallow soil with arsenic, lead, and TPHd was delineated and excavated under the Santa Cruz County Environmental Health Division (EHD) oversight, with about 1,400 tons disposed off-site. Confirmation sampling verified remaining soil meets residential standards. Although benzene and PCE vapors persist, they pose no current risk. Recorded Land Use Covenants require a <i>Soil Vapor Management Plan</i> and vapor intrusion mitigation measures prior to future development.
--

Maximum Documented Contaminant Concentrations – Before and After Cleanup

Contaminant	Soil (mg/kg)		Contaminant	Soil (mg/kg)	
	Before	After		Before	After
TPH (Gas)	3.4	3.4	Arsenic	2,430	11.5
TPH (Diesel)	1,870	<168	Dieldrin	<0.02	<0.02
Benzene	<0.062	<0.062	Other		
PCE	<0.004	<0.004			
Oil & Grease	561	561			
Lead	110	11.3			

Comments: Soil sampling (2014–2023) identified arsenic, lead, and TPHd, which were fully delineated and removed by remedial excavation in 2023.

Maximum Documented Contaminant Concentrations – Before and After Cleanup

Contaminant	Groundwater (µg/l)		Contaminant	Groundwater (µg/l)	
	Before	After		Before	After
TPH (Gas)	<50	<50	PCE	<0.5	<0.5
Benzene	<0.5	<0.5	TCE	<0.5	<0.5
Toluene	<0.5	<0.5	Vinyl Chloride	<0.5	<0.5
Ethylbenzene	<0.5	<0.5	MTBE	<0.5	<0.5
Xylenes	<1	<1	TPH (Diesel)	220	220
Naphthalene					

Comments:

Maximum Documented Contaminant Concentrations – Before and After Cleanup

Contaminant	Soil Gas (µg/m³)		Contaminant	Soil Gas (µg/m³)	
	Before	After		Before	After
TPH (Gas)	5,400	5,400	PCE	1,500	1,500
Benzene	47	47	TCE	< 0.00189	< 0.00189
Toluene	440	440	Vinyl Chloride		
Ethylbenzene	31	31	Other		
Xylenes	<170	<170			
Naphthalene	<24	<24			

Comments: No soil vapor cleanup was performed. Low-level petroleum VOCs likely from past airport uses were detected.

PCE in vapor reflects the regional plume from the upgradient Scotts Valley Dry Cleaners site.

V. Closure

Amount of contaminant(s) mass removed (lbs.): 1,400.49 tons of impacted soils		
Residual Contaminant(s) of Concern: PCE and benzene in soil vapor.		
Media Effected: Soil, groundwater, and soil gas.		
Location/depth of residual contaminant mass left-in-place: Chlorinated solvent (PCE) and benzene in shallow soil vapor (5-15 ft bgs)		
Is the soil gas plume stable or shrinking? Yes <input type="checkbox"/> No <input checked="" type="checkbox"/>	Is the GW plume stable or shrinking? Yes <input type="checkbox"/> No <input type="checkbox"/> Unknown	
Does remaining plume (Soil Gas and/or GW) extend off-site? Yes <input checked="" type="checkbox"/> No <input type="checkbox"/>		
Approximate length of hydrocarbon or solvent plume: Plume originates from Scotts Valley Dry Cleaners	Soil Gas (ft.):	Groundwater (ft.):
Does completed corrective action protect existing and potential beneficial uses per the Basin Plan? Yes <input checked="" type="checkbox"/> No <input type="checkbox"/>		
Does corrective action protect public health for current land use? Yes <input checked="" type="checkbox"/> No <input type="checkbox"/>		
Should corrective action be reviewed if land uses change? Yes <input checked="" type="checkbox"/> No <input type="checkbox"/>		
(If Yes, please review additional comments section below)		
Groundwater Monitoring Wells destroyed? Yes <input type="checkbox"/> No <input type="checkbox"/> N/A <input checked="" type="checkbox"/>	Number destroyed: N/A	Number retained: 5 (from offsite plume)
Soil Gas Monitoring Wells destroyed? Yes <input checked="" type="checkbox"/> No <input type="checkbox"/> N/A <input type="checkbox"/>	Number destroyed: 21	Number retained: 0

VI. State Agency Representative Data

Agency: Central Coast Regional Water Quality Control Board	Address: 895 Aerovista Place, Suite 101
City/State/Zip: San Luis Obispo, CA 93401	
Responsible Staff Person: Greg Bishop	Title: Senior Engineering Geologist, Site Cleanup Program Manager
Email: Greg.Bishop@waterboards.ca.gov	Phone: (805) 549-3132
Agency: Department of Toxic Substances Control	Address: 700 Heinz Avenue, Suite 200C
City/State/Zip: Berkeley, CA 94710	
Responsible Staff Person: Nicole Yuen	Title: Hazardous Substances Engineer / Berkeley Brownfields Coordinator
Email: Nicole.Yuen@dtsc.ca.gov	Phone: (510) 540-3314

VII. Additional Comments

Site Management Requirements: Residual soil, soil gas, and/or groundwater contamination may still exist on-site that could pose an unacceptable risk under certain site development activities such as site grading, excavation, or de-watering. The Central Coast Regional Water Quality Board (CCRWQCB), Department of Toxic Substances Control (DTSC), Santa Cruz County Environmental Health Division (EHD), and the appropriate local planning and building departments must be notified prior to any changes in land use, grading activities, excavation, or dewatering. This notification must include a statement that residual soil, soil gas, and/or groundwater contamination underlie the property and nearby properties. The levels of residual contamination and any associated risks are expected to reduce with time.
Soil impacts of arsenic, lead, and TPHd were fully delineated and excavated for off-site disposal. Benzene and PCE in shallow soil vapor reflect historic airport activities and the regional PCE plume from the upgradient Scotts Valley Dry Cleaners. Because vapor intrusion could pose a risk during future development, EHD required a recorded Land Use Covenant and a Soil Vapor Management Plan, which must be submitted to and concurred by EHD before any future redevelopment construction begins.

VIII. Local Officer Certification

Signature of Director of Environmental Health:	Date:
---	--------------

S:\Hazmat\ENVIRONMENTAL CLEANUP\TEMPLATES\ECP_Certification_of_Completion_of_Remedial_Goal_Summary_Form_With_Attachments.pdf

Attachments

- 1.) Listing of Reports**
- 2.) List of property owners and occupants adjacent to the site**
- 3.) Extent of Soil Contamination**
- 4.) Extent of Ground Water Contamination**
- 5.) Extent of Soil Vapor Contamination**

Attachment 1

Listing of Reports

Attachment 1: Listing of Reports

GeoTracker References:

City of Santa Cruz Parcels: [T10000018740](#)

City of Scotts Valley Parcels: [T10000018739](#)

PREVIOUS SITE ENVIRONMENTAL REPORTS

Bureau Veritas North America: *Phase I Environmental Site Assessment, City of Scotts Valley Parcels (PDC #3271), 260 Mt. Hermon Road, 209 Bean Creek Road and Portion of Former Skypark Airport, Kings Village Road, Scotts Valley, California*, dated March 27, 2014.

Bureau Veritas North America: *Limited Subsurface Investigation, Scotts Valley Parcel Group, Mount Hermon Road and Kings Village Road, Scotts Valley, Santa Cruz County, California*, dated May 30, 2014.

Bureau Veritas North America: *Additional Subsurface Investigation, Scotts Valley Parcel Group, Mount Hermon Road and Kings Village Road Scotts Valley, Santa Cruz County, California*, dated September 30, 2014.

Weber, Hayes and Associates: *Work Plan for Additional Site Assessment, Former Skypark Airport, Scotts Valley, CA*, dated December 22, 2020.

Weber, Hayes and Associates: *Additional Site Assessment Report, Former Skypark Airport, Scotts Valley, CA*, dated April 2022.

Weber, Hayes and Associates: *Remedial Excavation Workplan, Former Skypark Airport, Scotts Valley, CA*, dated August 9, 2022.

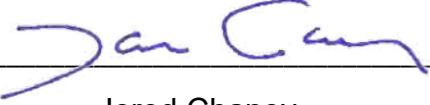
Weber, Hayes and Associates: *Site Management, Safety, and Dust Monitoring Plan (SMSDMP)*, dated August 30, 2023.

Weber, Hayes and Associates: *Remedial Excavation Completion Report*, dated January 10, 2024.

ADJACENT SITE ENVIRONMENTAL REPORTS

Arcadis: *Well Installation Completion Report, Former Watkins-Johnson Superfund Site - 440 Kings Village Road, Scotts Valley, California*, dated February 13, 2014.

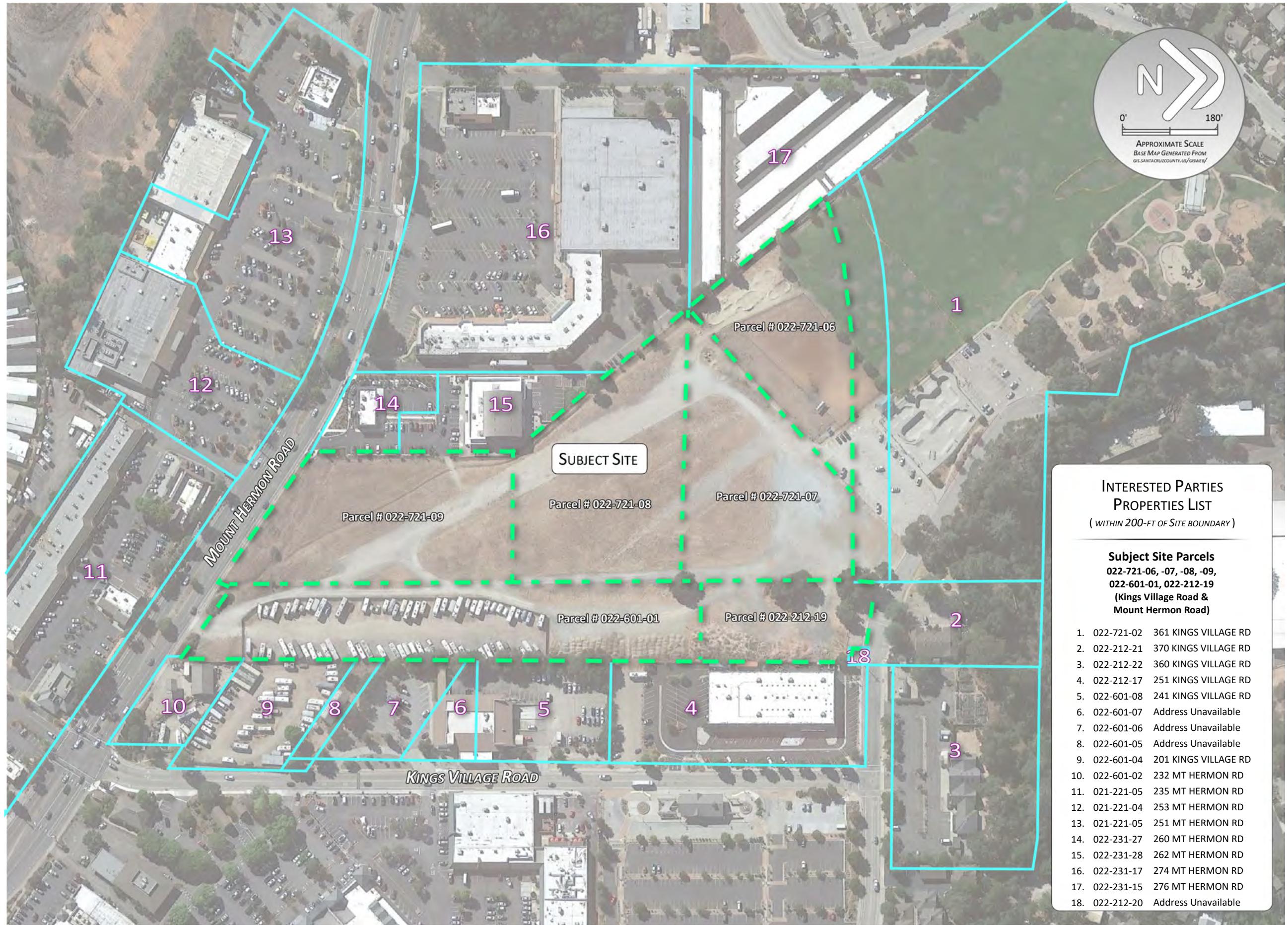
Integral Consulting Inc.: *Site-Specific Arsenic Background Analysis for Scotts Valley*, dated April 27, 2017.


Iris Environmental: *Comprehensive Closure Strategy, Scotts Valley Dry Cleaners, 272-A Mount Hermon Road, Scotts Valley, California*, dated February 1, 2016.

SECOR: *Site Conceptual Model, Scotts Valley Dry Cleaners, 272A Mount Hermon Road, Scotts Valley, California*, dated April 6, 2007.

Terraphase Engineering: *Soil Gas Assessment Report – Scotts Valley Dry Cleaners*, dated August 21, 2018

Trinity Source Group Inc.: *Remedial Action Plan Implementation Report, 260 Mount Hermon Road, Scotts Valley, California*, dated December 19, 2017


I attest, under penalty of perjury, in accordance with Water Code section 13267, the following documents constitute the complete list of documents pertaining to waste discharged, hydrogeology and other information directly relevant to the characterization and cleanup of the waste discharged at the subject site.

Signature: Date: November 19, 2025
Print Name: Jered Chaney

Attachment 2

List of property owners and occupants adjacent to the site

- Figure 1, Interested Parties Map
 - List of Property Owners

FIGURE 0
Project
2T104C

INTERESTED PARTIES MAP

SITE: FORMER SKY PARK AIRPORT / TOWN CENTER PROJECT
ADDRESS: KINGS VILLAGE RD & MT HERMON RD, SCOTTS VALLEY, CA 95066
APNs: 022-721-07, -08, -09, 022-601-01, 022-212-19, 022-721-06

REVISIONS/NOTES:

DATE: MARCH 2024

WEBER, HAYES & ASSOCIATES
Hydrogeology and Environmental Engineering
 120 Westgate Drive, Watsonville, CA
 831.722.3580 / www.weber-hayes.com

Interested Parties Property List (owners and occupants of all parcels adjacent to the Subject Site)					
Map #	APN #	Mailing Address			
1	022-721-02	REDEVELOPMENT AGENCY OF THE CITY OF	1 CIVIC DR	SCOTTS VALLEY	CA 95066
		Occupant	361 KINGS VILLAGE RD	SCOTTS VALLEY	CA 95066-4036
2	022-212-21	REDEVELOPMENT AGENCY OF THE CITY OF	1 CIVIC DR	SCOTTS VALLEY	CA 95066
		Occupant	370 KINGS VILLAGE RD	SCOTTS VALLEY	CA 95066-4022
3	022-212-22	REDEVELOPMENT AGENCY OF THE CITY OF	1 CIVIC DR	SCOTTS VALLEY	CA 95066
		Occupant	360 KINGS VILLAGE RD	SCOTTS VALLEY	CA 95066-4026
4	022-212-17	REDEVELOPMENT AGENCY OF THE CITY OF	1 CIVIC DR	SCOTTS VALLEY	CA 95066
		Occupant	251 KINGS VILLAGE RD	SCOTTS VALLEY	CA 95066-4025
5	022-601-08	UNITED STATES POSTAL SERVICE	850 CHERRY AVE	SAN BRUNO	CA 94099
6	022-601-07	UNITED STATES POSTAL SERVICE	850 CHERRY AVE	SAN BRUNO	CA 94099
7	022-601-06	UNITED STATES POSTAL SERVICE	850 CHERRY AVE	SAN BRUNO	CA 94099
8	022-601-05	MANANA WOODS MUTUAL WATER CO	P O BOX 66929	SCOTTS VALLEY	CA 95067
9	022-601-04	SCOTTS VALLEY SHOPPING CENTER LLC	PO BOX 130339	CARLSBAD	CA 92013
		Occupant	201 KINGS VILLAGE RD	SCOTTS VALLEY	CA 95066-4025
10	022-601-02	SCOTTS VALLEY SHOPPING CENTER LLC	PO BOX 130339	CARLSBAD	CA 92013
		Occupant	232 MT HERMON RD	SCOTTS VALLEY	CA 95066-4024
11	021-221-05	SCOTTS VILLAGE LLC	419 WAVERLEY ST	PALO ALTO	CA 94301
12	021-221-04	SCOTTS VILLAGE LLC	419 WAVERLEY ST	PALO ALTO	CA 94301
13	021-221-05	SCOTTS VILLAGE LLC	419 WAVERLEY ST	PALO ALTO	CA 94301
		Occupant	245 MT HERMON RD	SCOTTS VALLEY	CA 95066-4035
		Occupant	253 MT HERMON RD	SCOTTS VALLEY	CA 95066-4037
		Occupant	243 MT HERMON RD	SCOTTS VALLEY	CA 95066-4007
		Occupant	247 MT HERMON RD	SCOTTS VALLEY	CA 95066-4007
		Occupant	249 MT HERMON RD	SCOTTS VALLEY	CA 95066-4037
		Occupant	257 MT HERMON RD	SCOTTS VALLEY	CA 95066-4037
		Occupant	239 MT HERMON RD	SCOTTS VALLEY	CA 95066-4007
		Occupant	241 MT HERMON RD	SCOTTS VALLEY	CA 95066-4007
		Occupant	251 MT HERMON RD	SCOTTS VALLEY	CA 95066-4037
		Occupant	235 MT HERMON RD	SCOTTS VALLEY	CA 95066-4028
		Occupant	237 MT HERMON RD	SCOTTS VALLEY	CA 95066-4007
		Occupant	255 MT HERMON RD	SCOTTS VALLEY	CA 95066-4080
		Occupant	259 MT HERMON RD	SCOTTS VALLEY	CA 95066-4037
14	022-231-27	LA MADRONA CORNER PROPERTY LLC	144 IRONWOOD RANCH WAY	SOQUEL	CA 95073
15	022-231-28	Occupant	260 MT HERMON RD	SCOTTS VALLEY	CA 95066-4024
16	022-231-17	THE HANGAR AT SKY PARK LLC	PO BOX 66339	SCOTTS VALLEY	CA 95067
		S & A ITO FAMILY PARTNERSHIP	1606 N MAIN ST	SALINAS	CA 93906
		Occupant	274 MT HERMON RD	SCOTTS VALLEY	CA 95066-4024
		Occupant	262 MT HERMON RD	SCOTTS VALLEY	CA 95066-4024
		Occupant	270 MT HERMON RD	SCOTTS VALLEY	CA 95066-4024
		Occupant	264 MT HERMON RD	SCOTTS VALLEY	CA 95066-4024
		Occupant	266 MT HERMON RD	SCOTTS VALLEY	CA 95066-4010
17	022-231-15	Occupant	268 MT HERMON RD	SCOTTS VALLEY	CA 95066-4024
		Occupant	272 MT HERMON RD	SCOTTS VALLEY	CA 95066-4024
18	022-212-20	AIRPORT MINI STORAGE CALIFORNIA LIMI	591 REDWOOD HWY STE 2150	MILL VALLEY	CA 94941
		Occupant	276 MT HERMON RD	SCOTTS VALLEY	CA 95066-4024

NOTES:**Subject Site**

APNs: 022-721-06, 022-721-07, 022-721-08, 022-721-09, 022-601-01, 022-212-19

Address: Kings Village Road & Mount Hermon Road, Scotts Valley, CA 95066

APN = Assessor Parcel Number

Interested Parties List – Former Skypark Airport
Kings Village Road & Mount Hermon Road, Scotts Valley 95066

Site: Former Skypark Airport / Town Center Project, Scotts Valley, CA 95066:

City of Scotts Valley APNs: 022-721-06, 022-601-01, 022-212-19, 022-721-07, 022-721-08, 022-721-09

No Address Available
Scotts Valley, CA 95066

Mailing Address:

1 Civic Center Drive
Scotts Valley, CA 95066

Site Property Owner(s):

City of Scotts Valley
c/o: Kirsten Powell, City Attorney
1 Civic Center Drive
Scotts Valley, California 95066

Responsible Parties:

City of Scotts Valley
c/o: Kirsten Powell, City Attorney
1 Civic Center Drive
Scotts Valley, California 95066

Site Tenants:

Not Applicable

IPL List of Agencies:

Local Implementing Agency (LIA)

County of Santa Cruz Environmental Health Division
Hazardous Materials and Environmental Cleanup
701 Ocean Street, Room 312
Santa Cruz, CA 95060
(831) 454-2022, EnvironmentalHealth@santacruzcounty.us

Water Purveyor

Scotts Valley Water District (SVWD)
2 Civic Center Drive
Scotts Valley, CA 95066
(831) 438-2363

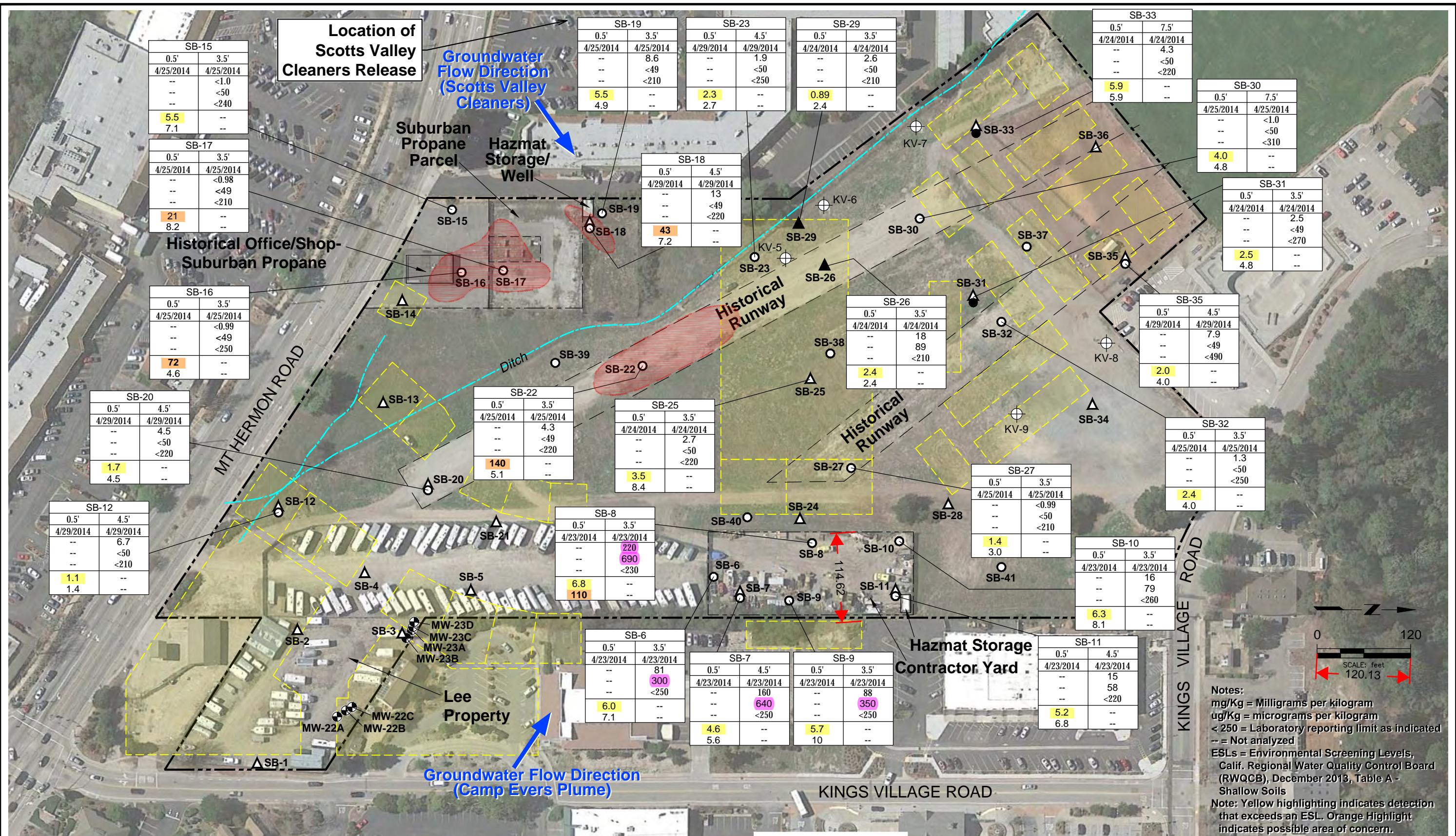
Building/Planning Department

City of Scotts Valley Planning Department
1 Civic Center Drive
Scotts Valley, CA 95066
(831) 440-5640

Attachment 3

Figures

- Figure 1: Soil Analytical Results – Metals & TPH – (BV 2014) – Before Cleanup
- Figure 2: Soil Analytical Results – Metals & TPH – Exceedances Only -(WHA 2021)– Before Cleanup
- Figure 3: Soil Analytical Results – Combined 2014 & 2021 Exceedance Areas– Before Cleanup
- Figure 4: Soil Excavation Areas and Volumes of all seven (7) impacted locations
- Figure 5: Soil Excavation (Arsenic) – **Former Runway Area** – During/After Cleanup
- Figure 6: Soil Excavation (Arsenic) – **B-6** – During/After Cleanup
- Figure 7: Soil Excavation (Arsenic) – **B-24** – During/After Cleanup
- Figure 8: Soil Excavation (Arsenic) – **B-25** – During/After Cleanup
- Figure 9: Soil Excavation (Arsenic) – **B-30** – During/After Cleanup
- Figure 10: Soil Excavation (Diesel) – **B-40** – During/After Cleanup
- Figure 11: Soil Excavation (Lead) – **SB-8** – During/After Cleanup


Extent of Soil Contamination

Before Cleanup

- Table 1 (archived): Soil Sample Analytical Results – Total Petroleum Hydrocarbons (TPH), Volatile Organic Compounds (VOCs) – (April 2014)
- Table 2 (archived): Soil Sample Analytical Results – Metals (CAM 17) Analysis – (April 2014)
- Table 3: Summary of Soil Analytical Results – Metals (CAM 17) Analysis & TPH – (May 2021)
- Table 4: Summary of Soil Analytical Results –TPH as Gasoline, VOCs, and PCBs – (May 2021)
- Table 5: Summary of Soil Analytical Results –Chlorinated Pesticides – (May 2021)
- Table 6: Summary of Soil Analytical Results – Polycyclic Aromatic Hydrocarbons– (May 2021)

After Cleanup

- Table 7: Summary of **Runway Strip** Delineation Soil Analytical Results – Arsenic – (January & May 2023)
- Table 8: Summary of **B-6** Soil Analytical Results – Arsenic – (January & May 2023)
- Table 9: Summary of **B-24** Soil Analytical Results – Arsenic – (May 2021 & February 2023)
- Table 10: Summary of **B-25** Soil Analytical Results – Arsenic – (May 2021 & February 2023)
- Table 11: Summary of **B-30** Soil Analytical Results – Arsenic – (May 2021 & February / May 2023)
- Table 12: Summary of **B-40** Soil Analytical Results – TPH-diesel – (May 2021 & January 2023)
- Table 13: Summary of **SB-8** Soil Analytical Results – Lead – (May 2021 & January 2023)

Legend:

Proposed Development
(HKIT Architects, March 2014)

Approximate Limits of Elevated Arsenic in Soil (See Figure 4 for Additional Details)

△ Soil Vapor Boring - approx. 5' b

▲ Soil Vapor Boring - approx. 5' and 15'

- Soil Sample
- Soil and G...

Soil and Grab Samples

- II) Existing Monitoring Well (Watkins-Johnson Investigation)
- II) Existing Monitoring Well (Lee Property) - Camp Evers

8.51

3.5
22/2014

Sampling Date
Total Petroleum Hydrocarbons as diesel

81 Total Petroleum Hydrocarbons as diesel (mg/Kg)
300 Total Petroleum Hydrocarbons as motor oil (mg/Kg)

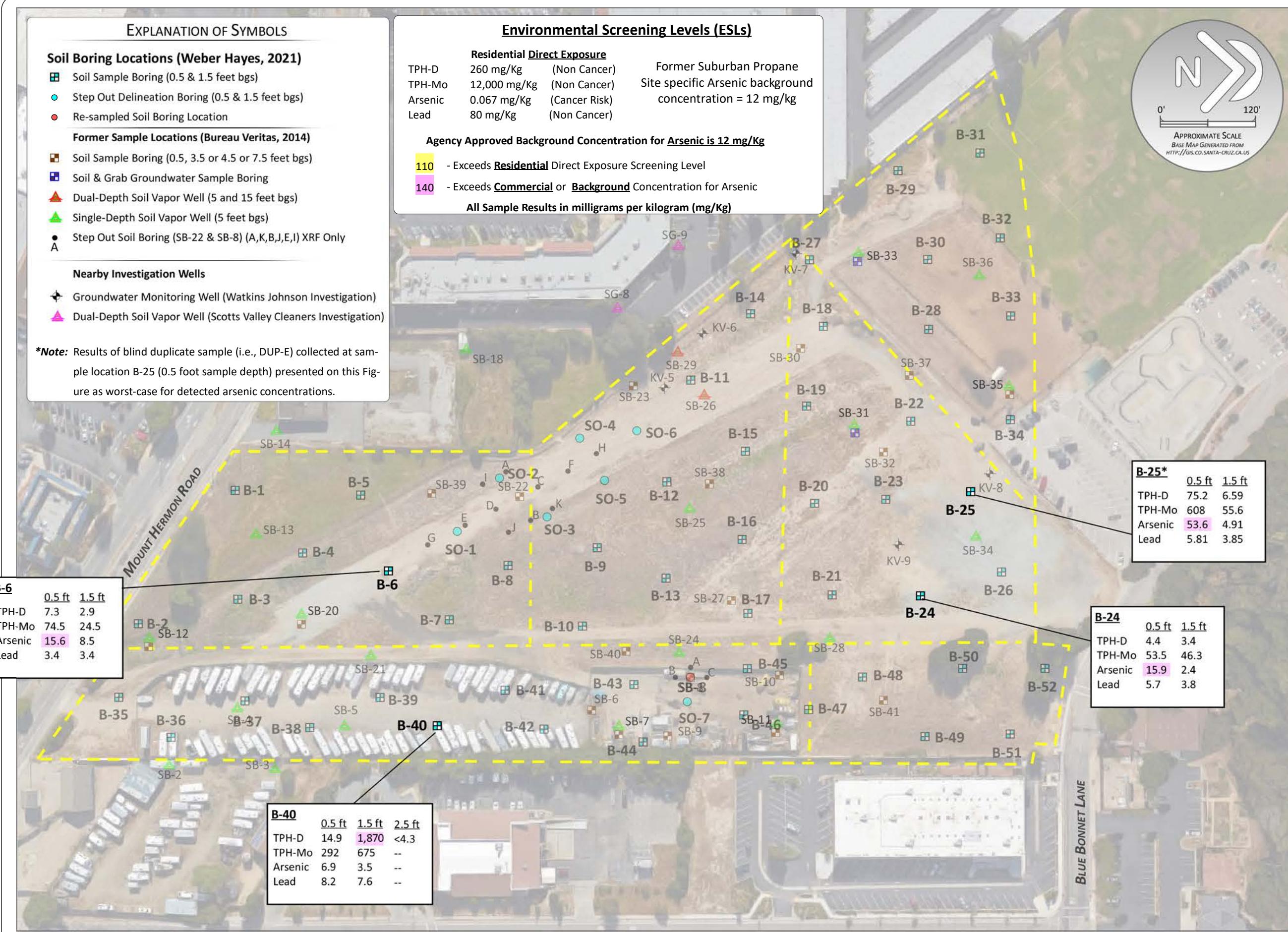
Total Petroleum Hydrocarbons as motor fuel
Total Petroleum Hydrocarbons as gasoline

Total Petroleum Hydrocarbons as gasoil wt-%/V-%

-- mg/Kg
-- $\mu\text{g}/\text{Vg}$

-- mg/Kg

SOIL ANALYTICAL RESULTS FOR TPH AND METALS

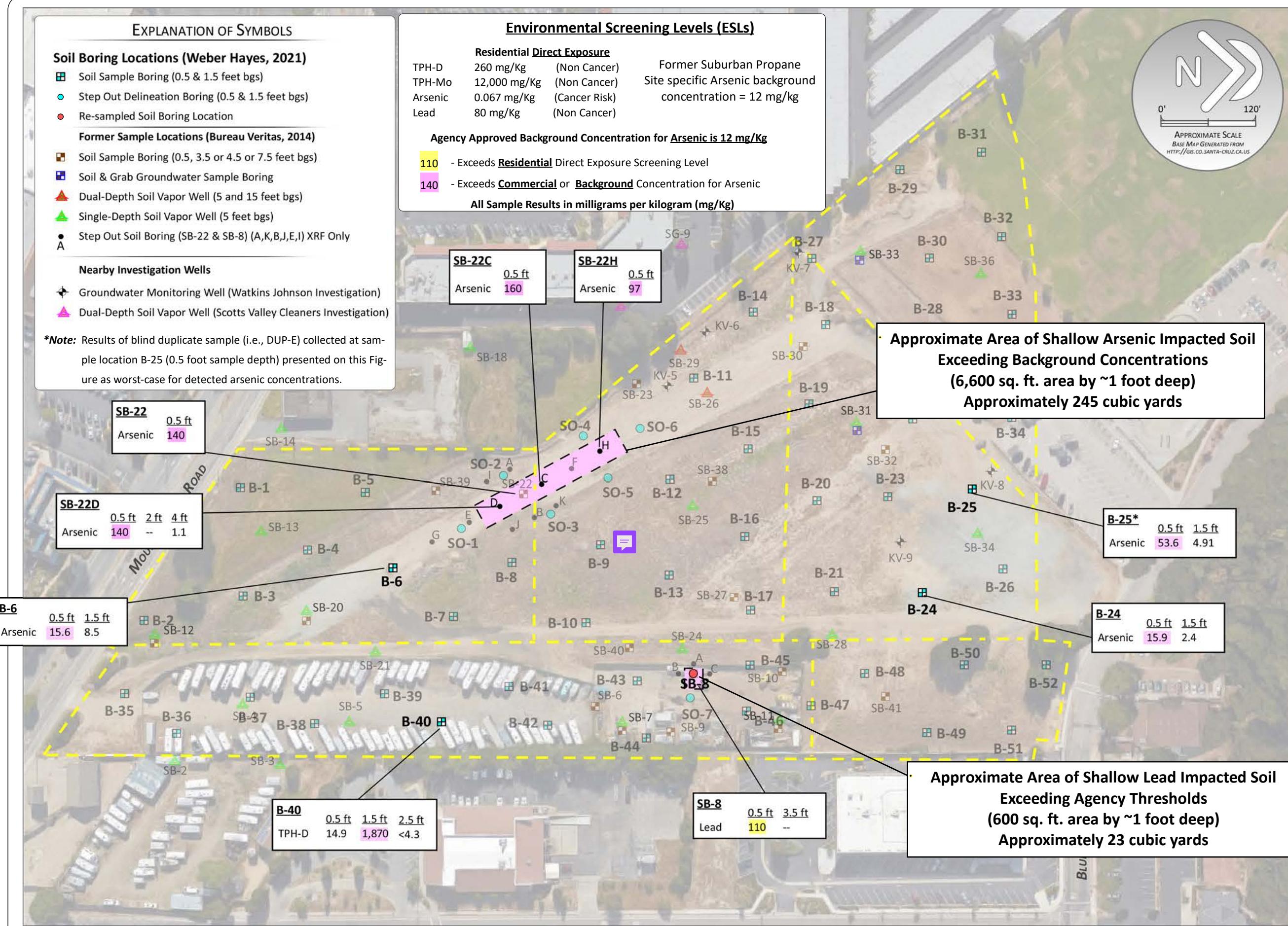

SCOTTS VALLEY PARCEL GROUP
SCOTTS VALLEY, CALIFORNIA

Project No. 33114-014014.02

Figure 1

09/28/14
SITE0914.DWG

FIGURE 2
Project
2X975


SITE MAP WITH CURRENT SOIL SAMPLE RESULTS (Exceedances Only)

SITE: TOWN CENTER PROJECT AREA
ADDRESS: FORMER AIRPORT, SCOTTS VALLEY, CA

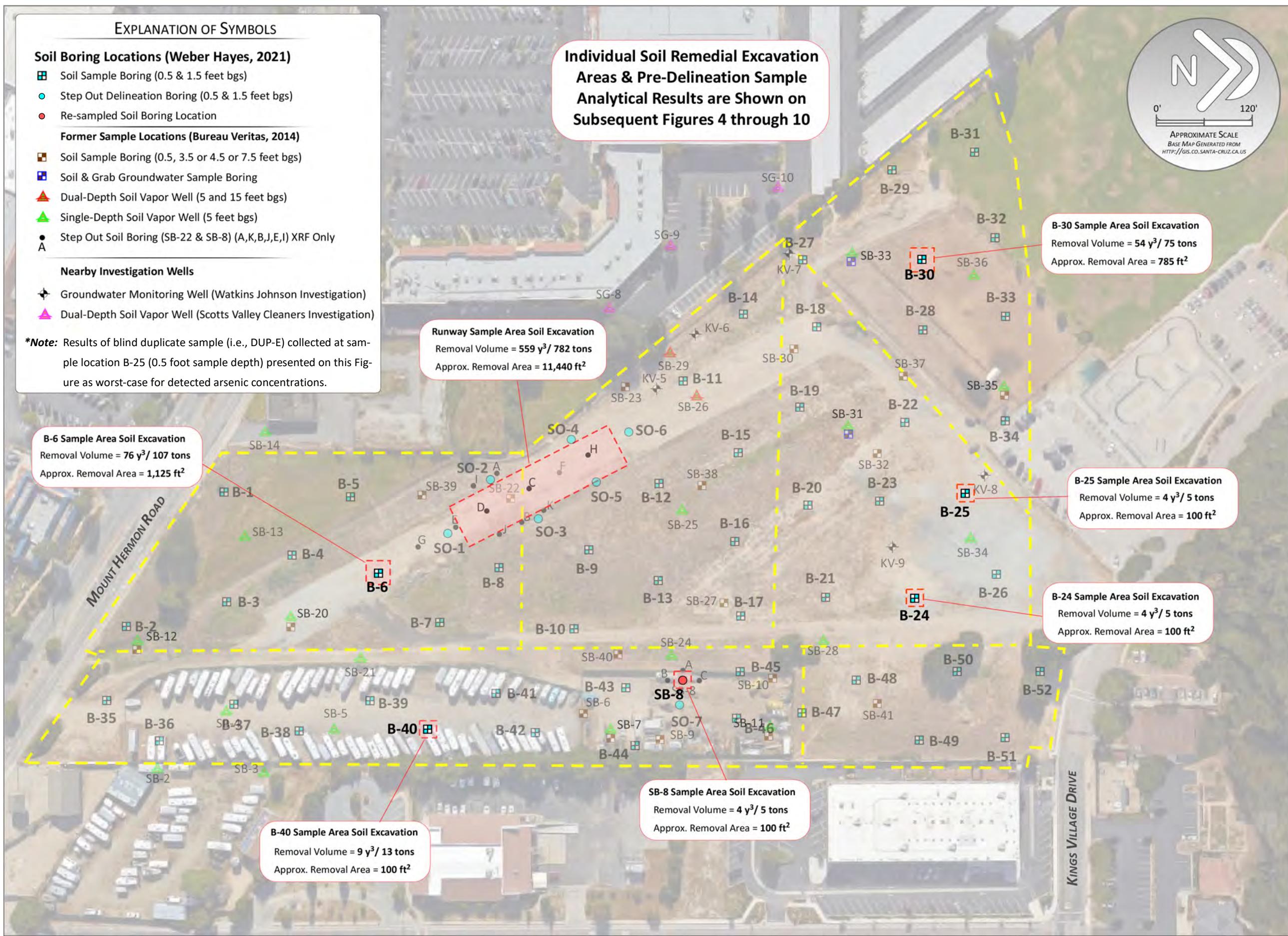
DATE: JUNE 2021

WEBER, HAYES & ASSOCIATES
Hydrogeology and Environmental Engineering
120 Westgate Drive, Watsonville, CA
831.722.3580 / www.weber-hayes.com

FILE: 2x975_S-Cruz parcels in Scotts Valley(Figures

FIGURE 3
Project 2X975

SITE MAP WITH CURRENT & PREVIOUS SOIL SAMPLE RESULTS SHOWING CONCENTRATIONS EXCEEDING AGENCY SCREENING LEVELS


SITE: TOWN CENTER PROJECT AREA
ADDRESS: FORMER AIRPORT, SCOTTS VALLEY, CA

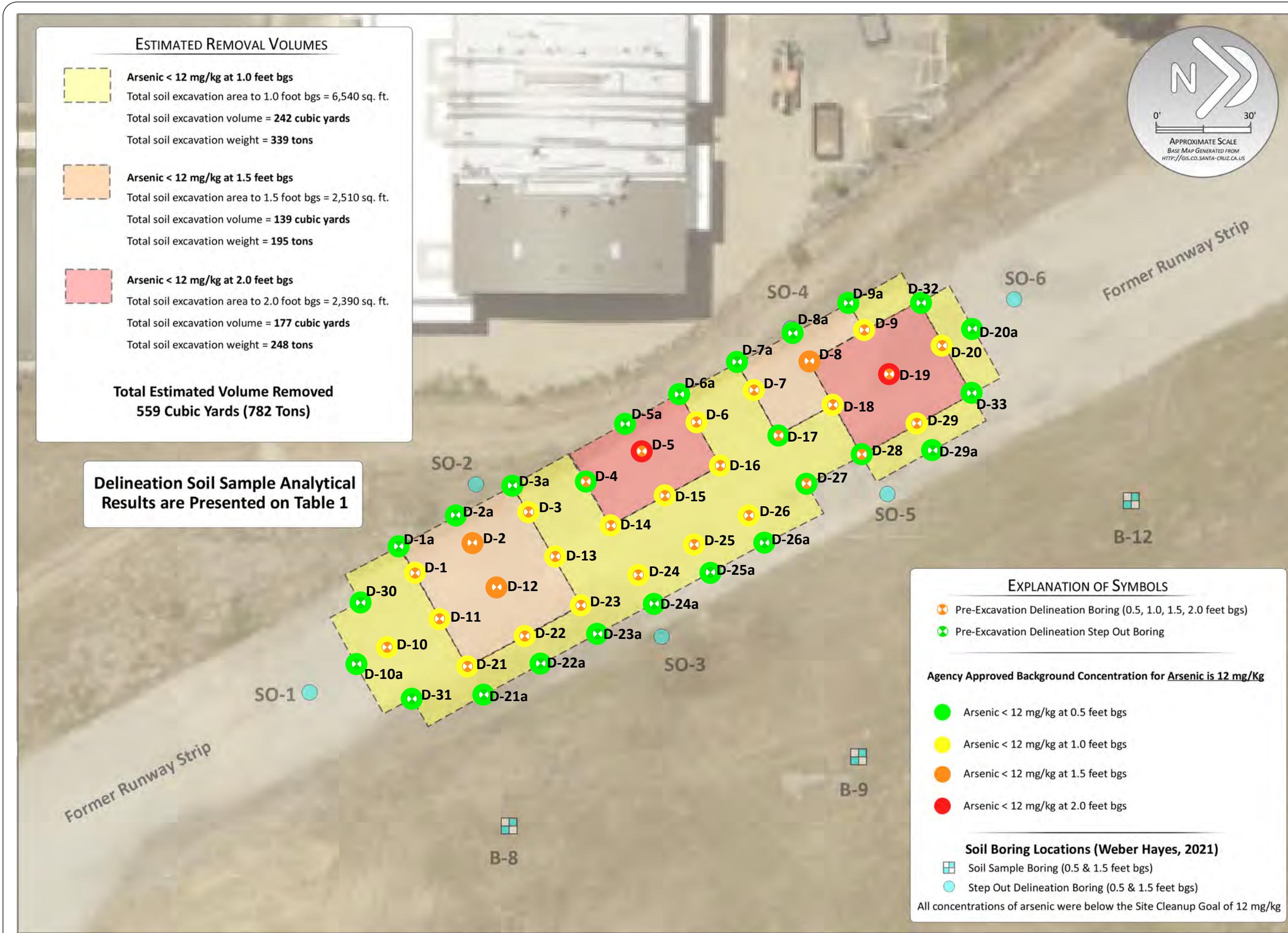
DATE: FEB 2022

WEBER, HAYES & ASSOCIATES
Hydrogeology and Environmental Engineering
120 Westgate Drive, Watsonville, CA
831.722.3580 / www.weber-hayes.com

FILE: 2x975_S-Cruz parcels in Scotts Valley\Figures

FIGURE 4
Project
2X975 / 2T014

SITE MAP WITH PREVIOUS SAMPLE LOCATIONS & PRE-DELINATEED REMEDIAL SOIL EXCAVATION AREAS


SITE: TOWN CENTER PROJECT AREA
ADDRESS: FORMER AIRPORT, SCOTTS VALLEY, CA

DATE: JANUARY 2024

FILE: 2X975_S-CRUZ PARCELS IN SCOTTS VALLEY\FIGURES\2023-08 SMIDP

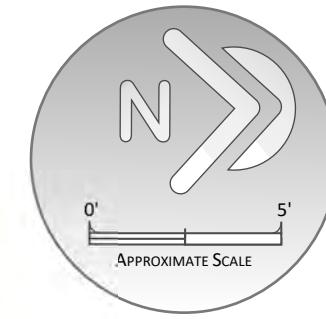
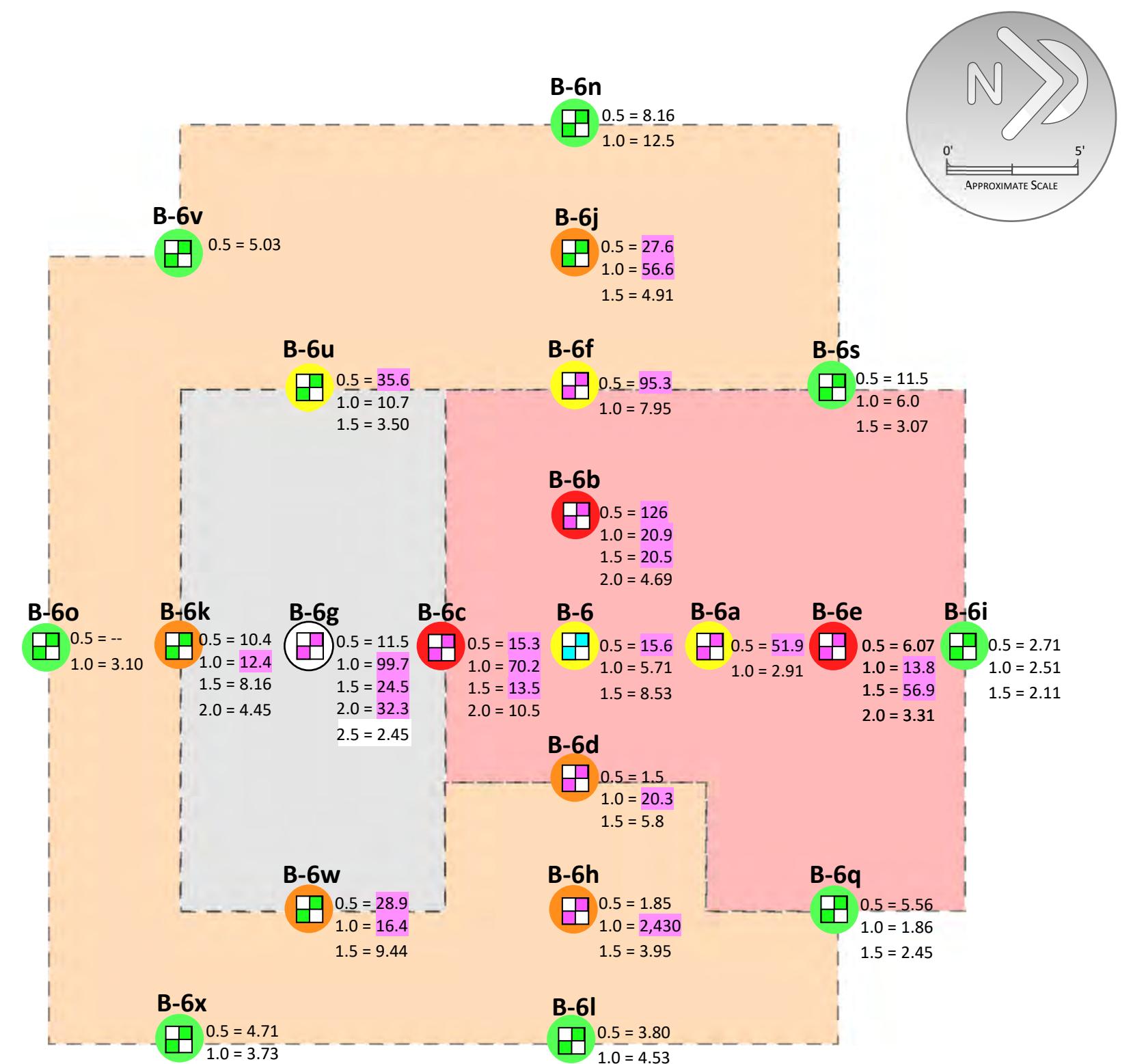


WEBER, HAYES & ASSOCIATES
Hydrogeology and Environmental Engineering
120 Westgate Drive, Watsonville, CA
831.722.3580 / www.weber-hayes.com

FIGURE 5
Project
2X975 / 2T014

REMEDIAL EXCAVATION AREAS AND REMOVAL DEPTHS
FORMER RUNWAY STRIP (CITY OF SANTA CRUZ PARCEL)
SITE: TOWN CENTER PROJECT AREA
ADDRESS: FORMER AIRPORT, SCOTTS VALLEY, CA
DATE: JANUARY 2024

FILE: 2X975_S-CRUZ PARCELS IN SCOTTS VALLEY\FIGURES\2022-07 REM Ex WP

FIGURE 6
Project
2X975 / 2T014

REMEDIAL EXCAVATION AREAS AND REMOVAL DEPTHS
SAMPLE AREA B-6 (CITY OF SANTA CRUZ PARCEL)

SITE: TOWN CENTER PROJECT AREA
 ADDRESS: FORMER AIRPORT, SCOTTS VALLEY, CA

DATE: JANUARY 2024

WEBER, HAYES & ASSOCIATES
Hydrogeology and Environmental Engineering
 120 Westgate Drive, Watsonville, CA
 831.222.3580 / www.weber-hayes.com

FILE: 2X975_S-Cruz parcels in Scotts Valley(Figures)

EXPLANATION OF SYMBOLS

 Pre-Excavation Delineation Boring (0.5, 1.0, 1.5, 2.0 feet bgs)

Agency Approved Background Concentration for Arsenic is 12 mg/Kg

Results: Arsenic $0.5 = 95.3 / \text{depth in ft bgs} = \text{results in mg/Kg}$

140 - Exceeds Agency Approved **Background** Concentration for Arsenic

 Arsenic < 12 mg/kg at 0.5 feet bgs

 Arsenic < 12 mg/kg at 1.0 feet bgs

Soil Boring Locations (Weber Hayes, 2021)

 Soil Sample Boring (0.5 & 1.5 feet bgs)

B-24f

 0.5 = 2.44
1.0 = 1.39

B-24b

 0.5 = 1.94
1.0 = 1.41

B-24g

 0.5 = 8.29
1.0 = 1.22

B-24c

 0.5 = 2.74
1.0 = 4.16

B-24

 0.5 = 15.9
1.0 = 1.44
1.5 = 2.43

B-24a

 0.5 = 2.62
1.0 = 1.79


B-24e

 0.5 = 4.37
1.0 = 1.10

B-24d

 0.5 = 3.24
1.0 = 1.79

ESTIMATED REMOVAL VOLUME

 Arsenic < 12 mg/kg at 1.0 feet bgs

Total soil excavation area to 1.0 foot bgs = 100 sq. ft.

Total soil excavation volume = **4 cubic yards**

Total soil excavation weight = **5 tons**

Sample Area B-24
Total Estimated Volume Removed
4 Cubic Yards (5 Tons)

B-24h

 0.5 = 6.28
1.0 = 2.10

WEBER, HAYES & ASSOCIATES
Hydrogeology and Environmental Engineering
120 Westgate Drive, Watsonville, CA
831.722.3580 / www.weber-hayes.com

REMEDIAL EXCAVATION AREAS AND REMOVAL DEPTHS

SAMPLE AREA B-24 (CITY OF SANTA CRUZ PARCEL)

Site: Town Center Project Area
Address: Former Scotts Valley Airport, Scotts Valley, CA

Date: January 2024

File: 2x975_S-Cruz parcels in Scotts Valley\Figures

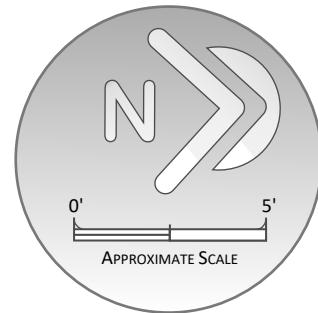
FIGURE
7
Project
2x975 / 2T014

EXPLANATION OF SYMBOLS

 Pre-Excavation Delineation Boring (0.5, 1.0, 1.5, 2.0 feet bgs)

Agency Approved Background Concentration for Arsenic is 12 mg/Kg

Results: Arsenic $0.5 = 95.3 / \text{depth in ft bgs} = \text{results in mg/Kg}$


140 - Exceeds Agency Approved Background Concentration for Arsenic

 Arsenic < 12 mg/kg at 0.5 feet bgs

 Arsenic < 12 mg/kg at 1.0 feet bgs

Soil Boring Locations (Weber Hayes, 2021)

 Soil Sample Boring (0.5 & 1.5 feet bgs)

B-25f

 0.5 = 8.17
1.0 = 10

B-25b

 0.5 = 4.16
1.0 = 4.46

B-25g

 0.5 = 5.23
1.0 = 4.41

B-25c

 0.5 = 0.73
1.0 = 7.45

B-25

 0.5 = 53.6
1.0 = 11.2
1.5 = 4.91

B-25a

 0.5 = <0.566
1.0 = 3.65

B-25e

 0.5 = 0.858
1.0 = 5.7

B-25d

 0.5 = 0.963
1.0 = 4.95

ESTIMATED REMOVAL VOLUME

 Arsenic < 12 mg/kg at 1.0 feet bgs

Total soil excavation area to 1.0 foot bgs = 100 sq. ft.

Total soil excavation volume = 4 cubic yards

Total soil excavation weight = 5 tons

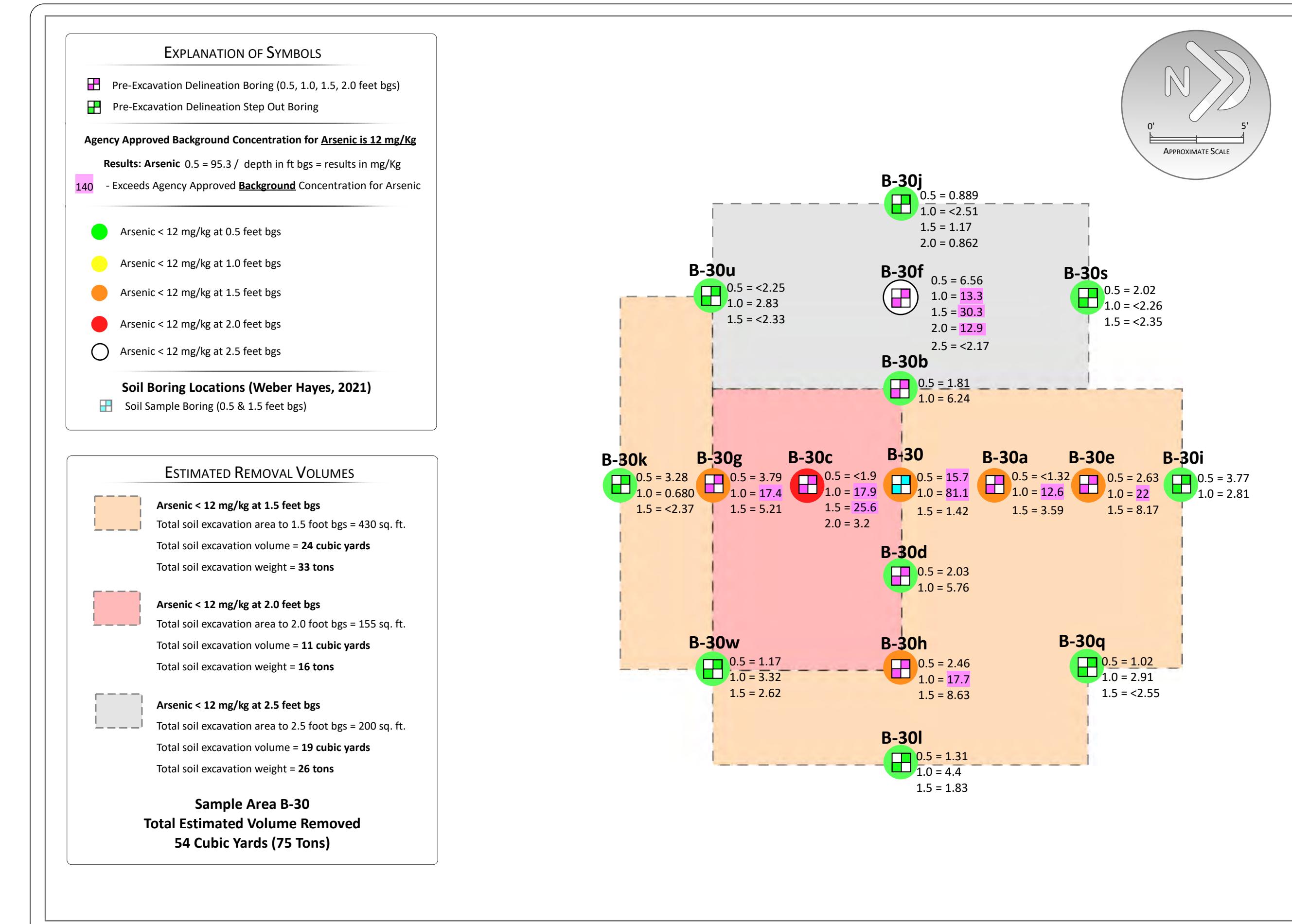
B-25h

 0.5 = <0.533
1.0 = 4.44

Sample Area B-25
Total Estimated Volume Removed
4 Cubic Yards (5 Tons)

WEBER, HAYES & ASSOCIATES
Hydrogeology and Environmental Engineering
120 Westgate Drive, Watsonville, CA
831.722.3580 / www.weber-hayes.com

REMEDIAL EXCAVATION AREAS AND REMOVAL DEPTHS


SAMPLE AREA B-25 (CITY OF SANTA CRUZ PARCEL)

Site: Town Center Project Area
Address: Former Scotts Valley Airport, Scotts Valley, CA

Date: January 2024

File: 2x975_S-Cruz parcels in Scotts Valley\Figures

FIGURE
8
Project
2x975 / 2T014

FIGURE 9
Project
2X975 / 2T014

FILE: 2x975_S-Cruz parcels in Scotts Valley(Figures)

REMEDIAL EXCAVATION AREAS AND REMOVAL DEPTHS
SAMPLE AREA B-30 (CITY OF SCOTTS VALLEY PARCEL)

SITE: TOWN CENTER PROJECT AREA
 ADDRESS: FORMER AIRPORT, SCOTTS VALLEY, CA

DATE: JANUARY 2024

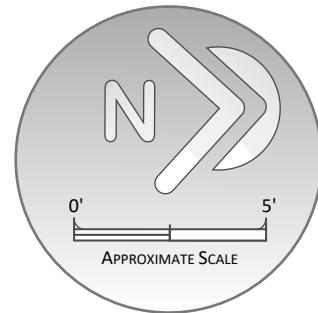
WEBER, HAYES & ASSOCIATES
Hydrogeology and Environmental Engineering
 120 Westgate Drive, Watsonville, CA
 831.722.3580 / www.weber-hayes.com

EXPLANATION OF SYMBOLS

 Pre-Excavation Delineation Boring (0.5, 1.0, 1.5, 2.0 feet bgs)

Residential Environmental Screening Level for Diesel is 260 mg/Kg

Results: Diesel 0.5 = 95.3 / depth in ft bgs = results in mg/Kg


140 - Exceeds ESL for **Diesel**

 Diesel < 260 mg/kg at 1.5 feet bgs

 Diesel < 260 mg/kg at 2.5 feet bgs

Soil Boring Locations (Weber Hayes, 2021)

 Soil Sample Boring (0.5, 1.5 & 2.5 feet bgs)

B-40f

 1.5 = <32.4
2.5 = <0.822

B-40b

 1.5 = <4.02
2.5 = 0.903

B-40g

 1.5 = <83.7
2.5 = 4.85

B-40c

 1.5 = <79.9
2.5 = <0.812

B-40

 0.5 = 14.9
1.5 = 1870
2.5 = <4.36

B-40a

 1.5 = 2.58
2.5 = 23.5

B-40e

 1.5 = 8.2
2.5 = <8.18

B-40d

 1.5 = <81.4
2.5 = <168

ESTIMATED REMOVAL VOLUME

Diesel < 260 mg/kg at 2.5 feet bgs

Total soil excavation area to 2.5 foot bgs = 100 sq. ft.

Total soil excavation volume = **9 cubic yards**

Total soil excavation weight = **13 tons**

Sample Area B-40
Total Estimated Volume Removed
9 Cubic Yards (13 Tons)

B-40h

 1.5 = <80.5
2.5 = <0.804

WEBER, HAYES & ASSOCIATES
Hydrogeology and Environmental Engineering
120 Westgate Drive, Watsonville, CA
831.722.3580 / www.weber-hayes.com

REMEDIAL EXCAVATION AREAS AND REMOVAL DEPTHS
SAMPLE AREA B-40 (CITY OF SCOTTS VALLEY PARCEL)

Site: Town Center Project Area
Address: Former Scotts Valley Airport, Scotts Valley, CA

Date: January 2024

File: 2x975_S-Cruz parcels in Scotts Valley\Figures

FIGURE
10
Project
2x975 / 2T014

EXPLANATION OF SYMBOLS

 Pre-Excavation Delineation Boring (0.5, 1.0, 1.5, 2.0 feet bgs)

Residential Environmental Screening Level for Lead is 80 mg/Kg

Results: Lead $0.5 = 95.3 / \text{depth in ft bgs} = \text{results in mg/Kg}$

140 - Exceeds ESL for Lead

 Lead < 12 mg/kg at 0.5 feet bgs

 Lead < 12 mg/kg at 1.0 feet bgs

Soil Boring Locations (Bureau Veritas, 2014)

 Soil Sample Boring (0.5 & 1.5 feet bgs)

SB-8f

 0.5 = 9.25
1.0 = 5.95

SB-8b

 0.5 = 9.3
1.0 = 7.53

SB-8g

 0.5 = 7.25
1.0 = 5.83

SB-8c

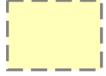
 0.5 = 9.07
1.0 = 8.48

SB-8

 0.5 = 110
1.0 = 6.93

SB-8a

 0.5 = 14.2
1.0 = 10.3


SB-8e

 0.5 = 11.1
1.0 = 7.48

SB-8d

 0.5 = 8.35
1.0 = 11.3

ESTIMATED REMOVAL VOLUME

 Lead < 80 mg/kg at 1.0 feet bgs

Total soil excavation area to 1.0 foot bgs = 100 sq. ft.

Total soil excavation volume = 4 cubic yards

Total soil excavation weight = 5 tons

SB-8h

 0.5 = 7.29
1.0 = 10.8

Sample Area SB-8

Total Estimated Volume Removed

4 Cubic Yards (5 Tons)

WEBER, HAYES & ASSOCIATES
Hydrogeology and Environmental Engineering
120 Westgate Drive, Watsonville, CA
831.722.3580 / www.weber-hayes.com

REMEDIAL EXCAVATION AREAS AND REMOVAL DEPTHS

SAMPLE AREA SB-8 (CITY OF SCOTTS VALLEY)

Site: Town Center Project Area
Address: Former Scotts Valley Airport, Scotts Valley, CA

Date: January 2024

File: 2x975_S-Cruz parcels in Scotts Valley\Figures

**FIGURE
11**
Project
2x975 / 2T014

Table 1 (archived)
Soil Sample Analytical Results
Total Petroleum Hydrocarbons (TPH) - Volatile Organic Compounds (VOC)
Former Scotts Valley Airport, Scotts Valley
All soil results are in milligrams per Kilogram (mg/Kg)

Sample Information		Laboratory Analytical Results									Other VOCs
					Volatile Organic Compounds (VOCs) by EPA Method 8260B						
Sample ID	Depth (ft)	TPH as MOTOR OIL (C22 - C32)	TPH as DIESEL (C12 - C22)	TPH as GASOLINE (C5 - C12)	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Naphthalene	
SB-6	3.5	300	81	<0.25	<0.005	<0.005	<0.005	<0.0099	<0.005	<0.0099	Acetone = 0.16
SB-7	4.5	640	160	<0.25	<0.0049	<0.0049	<0.0049	<0.0098	<0.0049	<0.0098	Acetone = 0.075
SB-8	3.5	690	220	<0.25	<0.0045	<0.0045	<0.0045	<0.009	<0.0045	<0.009	Acetone = 0.170
SB-9	3.5	350	88	<0.25	<0.005	<0.005	<0.005	<0.0099	<0.005	<0.0099	Acetone = 0.120
SB-10	3.5	79	16	<0.25	<0.005	<0.005	<0.005	<0.0099	<0.005	<0.0099	Acetone = 0.160
SB-11	4.5	58	15	<0.25	<0.0044	<0.0044	<0.0044	<0.0087	<0.0044	<0.0087	Acetone = 0.088
SB-12	4.5	<50	6.7	<0.25	<0.005	<0.005	<0.005	<0.0099	<0.005	<0.0099	All Other VOCs = ND
SB-15	3.5	<50	<1.0	<0.25	<0.0049	<0.0049	<0.0049	<0.0098	<0.0049	<0.0098	All Other VOCs = ND
SB-16	3.5	<50	<1.0	<0.25	<0.0045	<0.0045	<0.0045	<0.009	<0.0045	<0.009	All Other VOCs = ND
SB-17	3.5	<50	<1.0	<0.25	<0.005	<0.005	<0.005	<0.0099	<0.005	<0.0099	All Other VOCs = ND
SB-18	4.5	<50	13	<0.25	<0.005	<0.005	<0.005	<0.0099	<0.005	<0.0099	All Other VOCs = ND
SB-19	3.5	<50	8.6	<0.25	<0.0044	<0.0044	<0.0044	<0.0087	<0.0044	<0.0087	All Other VOCs = ND
SB-20	4.5	<50	4.5	<0.25	<0.0041	<0.0041	<0.0041	<0.0082	<0.0041	<0.0082	All Other VOCs = ND
SB-22	3.5	<50	4.3	<0.25	<0.0044	<0.0044	<0.0044	<0.0087	<0.0044	<0.0087	Acetone = 0.085
SB-23	4.5	<50	1.9	<0.25	<0.0041	<0.0041	<0.0041	<0.0082	<0.0041	<0.0082	All Other VOCs = ND
SB-25	3.5	<50	2.7	<0.25	<0.0043	<0.0043	<0.0043	<0.0087	<0.0043	<0.0087	All Other VOCs = ND
SB-26	3.5	89	18	<0.25	<0.0042	<0.0042	<0.0042	<0.0084	<0.0042	<0.0084	Acetone = 0.043
SB-27	3.5	<50	<1.0	<0.25	<0.0041	<0.0041	<0.0041	<0.0082	<0.0041	<0.0082	All Other VOCs = ND
SB-29	3.5	<50	2.6	<0.25	<0.0041	<0.0041	<0.0041	<0.0082	<0.0041	<0.0082	Acetone = 0.046
SB-30	7.5	<50	<1.0	<0.25	<0.0062	<0.0062	<0.0062	<0.012	<0.0062	<0.012	All Other VOCs = ND
SB-31	3.5	<50	2.5	<0.25	<0.0054	<0.0054	<0.0054	<0.011	<0.0054	<0.011	All Other VOCs = ND
SB-32	3.5	<50	1.3	<0.25	<0.005	<0.005	<0.005	<0.0099	<0.005	<0.0099	All Other VOCs = ND
SB-33	7.5	<50	4.3	<0.25	<0.0043	<0.0043	<0.0043	<0.0087	<0.0043	<0.0087	All Other VOCs = ND
SB-35	4.5	<50	7.9	<0.25	<0.0041	<0.0041	<0.0041	<0.0082	<0.0041	<0.0082	All Other VOCs = ND
<i>Environmental Screening Levels (ESLs) ⁽¹⁾</i> Residential / Commercial (Construction Worker)		12,000 / 180,000 (54,000)	260 / 1,200 (1,100)	430 / 2,000 (1,800)	0.33 / 1.4 (33)	1,100 / 5,300 (4,700)	5.9 / 26 (540)	580 / 2,500 (2,400)	47 / 210 (4,100)	3.8 / 17 (400)	Multiple Compounds (no exceedances) ⁽²⁻³⁾
<i>"Tier 1 ESL" (all possible pathways & land uses)</i> Basis = Human Health (HH), Leachability (L), Ecologic (Eco), or Odor (O)		1,600 (ECO)	260 (HH)	100 (O)	0.025 (L)	3.2 (L)	0.43 (L)	2.1 (L)	0.028 (L)	0.042 (L)	Multiple Compounds (no exceedances) ⁽³⁾
<i>DTSC Human Health Risk-Based Screening Levels</i> Residential / Commercial ⁽²⁾		Not Established	Not Established	Not Established	0.33 / 1.4	1,100 / 5,300	5.8 / 25	580 / 2,500	47 / 210	3.8 / 17	Multiple Compounds (no exceedances) ⁽³⁾

See Notes on Next Page

Table 1 (archived)
Soil Sample Analytical Results

Total Petroleum Hydrocarbons (TPH) - Volatile Organic Compounds (VOC)
Former Scotts Valley Airport, Scotts Valley

Notes

1 = Environmental Screening Levels (ESLs): Regional Water Quality Control Board (San Francisco Bay Region) guideline document: *Screening for Environmental Concerns at Sites With Contaminated Soil and Groundwater* (Final version, 2019). The ESLs are intended to provide quantitative risk-based guidance on whether further assessment or remediation of contamination is warranted
https://www.waterboards.ca.gov/sanfranciscobay/water_issues/programs/ESL/new/ESL_Summary_Tables_24Jan19_Rev1.pdf

TIER 1 ESL = The most conservative Environmental Screening Level (ESL) across all potential pathways.

NC = Indicates the lowest ESL is based on the **Non Cancer Hazard**.

CR = Indicates the lowest ESL is based on the **Cancer Risk**.

O = Indicates the lowest ESL is based on the potential for an **"odor nuisance"** (i.e. 100 mg/kg for gasoline).

TH= Terrestrial Habitat

L = Indicates the lowest ESL is based on the **potential leaching pathway** (for groundwater protection).

2 = CA DTSC Soil Screening Levels: From the California Department of Toxic Substances Control (DTSC), Office of Human and Ecological Risk (HERO), Human Health Risk Assessment (HHRA) Note Number 3, Table 1, April 2019. **If no DTSC screening level is established then the corresponding US EPA RSL is provided.**

3 = Trace concentrations of volatile organic compounds were detected in a number of samples. These compound detections were checked against the environmental screening thresholds and there were no exceedances (ESL's/DTSC-modified).

Acetone = 0.92 / NE

Isopropylbenzene = NE / NE

P-Isopropyltoluene = NE / NE

N-Propylbenzene = NE / NE

Styrene = 25 / NE

Tetrachloroethene = 0.08 / 2.7

1,2,4-Trimethylbenzene = NE / NE

1,2,3-Trimethylbenzene = NE / NE

1,3,5-Trimethylbenzene = NE / NE

US EPA Region 9 Soil Regional Screening Levels (RSLs): From [US EPA Regional Screening Levels for Soil](https://semispub.epa.gov/src/document/HQ/199432) (<https://semispub.epa.gov/src/document/HQ/199432>), last updated May 2019 using the Summary Table [based on Carcinogenic Target Risk (TR) =1E-6, Noncancer Hazard Index (HI) =1.0].

RDL = **Reported Detection Limit** = is the laboratory-determined value that is 2 to 5 times above the Method Detection Limit (MDL) that can be reproduced in a manner that results in a 99% confidence level and is both accurate and precise.

J = Laboratory reports that the detection value is between MDL and RDL, and should be considered an estimate.

^ = Detection and Quantitation Limits are raised due to sample dilution

- = Not Analyzed

ND = Non Detection

NE = Not Established

< = A "less than" symbol indicates no detectable concentrations (i.e., the laboratory **did not** detect the contaminant at the concentration shown).

BOLD = A bolded concentration indicates the laboratory detected the contaminant at the concentration shown.

BOLD = Analytical result detected at a concentration that is above the Commercial ESL.

BOLD = Analytical result detected at a concentration that is above the Residential ESL.

BOLD = Analytical result detected at a concentration that is above the most conservative ESL (Tier I)

Table 2 (archived)

Soil Sample Analytical Results

Metals Analysis (CAM 17)

Former Scotts Valley Airport, Scotts Valley

All soil results are in milligrams per Kilogram (mg/Kg) - unless stated otherwise

Sample Information		CAM-17 Metals by EPA Method 6010B																
Sample ID	Depth (ft)	Antimony	Arsenic (A)	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium (V)	Zinc
SB-6	0.5	--	6	55	--	0.27	15	--	--	7.1	0.076	--	--	<0.81	<0.20	--	--	--
SB-7	0.5	--	4.6	61	--	0.2	13	--	--	5.6	0.055	--	--	<0.92	<0.23	--	--	--
SB-8	0.5	--	6.8	65	--	0.25	13	--	--	110	0.057	--	--	<0.72	<0.18	--	--	--
SB-8-A	0.5 4 7.5	--	--	--	--	--	--	--	--	8.8 5.5 3	--	--	--	--	--	--	--	--
SB-8-B	0.5 4	--	--	--	--	--	--	--	--	7 6.3	--	--	--	--	--	--	--	--
SB-8-C	0.5 4 7.5	--	--	--	--	--	--	--	--	8 5.9 3	--	--	--	--	--	--	--	--
SB-9	0.5	--	5.7	61	--	0.36	12	--	--	10	0.066	--	--	<0.85	<0.21	--	--	--
SB-10	0.5	--	6.3	71	--	0.43	14	--	--	8.1	0.069	--	--	<0.97	<0.24	--	--	--
SB-11	0.5	--	5.2	64	--	0.3	14	--	--	6.8	0.058	--	--	<0.83	<0.21	--	--	--
SB-12	0.5	--	1.1	15	--	<0.095	2.7	--	--	1.4	<0.0092	--	--	<0.76	<0.20	--	--	--
SB-15	0.5	--	5.5	19	--	<0.12	3.6	--	--	7.1	0.067	--	--	<0.93	<0.23	--	--	--
Environmental Screening Levels (ESLs) ⁽¹⁾ <u>Human Health & Safety Pathways</u> (including groundwater) Residential or Commercial Land Use (construction worker)		11 / 160 (50)	0.067 / 0.31	15,000 / 220,000 (3,000)	16 / 230 (27)	78 / 1,100 (51)	Not Established	23 / 350 (28)	3,100 / 47,000 (14,000)	80 / 320 (160)	13 / 190 (44)	390 / 5,800 (1,800)	820 / 11,000 (86)	390 / 5,800 (1,700)	390 / 5,800 (1,800)	0.78 / 12 (3.5)	390 / 5,800 (470)	23,000 / 350,000 (110,000)
"Tier 1 ESL" (all possible pathways & land uses) Basis = Human Health (HH), Leachability (L), Ecologic (Eco), or Odor (O)		11 (HH)	0.067 (HH)	390 (ECO)	5 (ECO)	1.9 (ECO)	160 (ECO)	23 (HH)	180 (ECO)	32 (ECO)	13 (HH)	6.9 (ECO)	86 (HH)	2.4 (ECO)	25 (ECO)	0.78 (HH)	18 (ECO)	340 (ECO)
DTSC-Modified Screening Levels ⁽²⁾ (for human health risk) Residential or Commercial Land Use		31 / 470	0.11 / 0.36	15,000 / 220,000	15 / 210	5.2 / 7.3	36,000 / 170,000	23 / 350	3,100 / 47,000	80 / 320	1.0 / 4.4	390 / 5,800	490 / 3,100	390 / 5,800	390 / 1,500	0.78 / 12	390 / 1,000	23,000 / 350,000

Table 2 (archived)

Soil Sample Analytical Results

Metals Analysis (CAM 17)

Former Scotts Valley Airport, Scotts Valley

All soil results are in milligrams per Kilogram (mg/Kg) - unless stated otherwise

Sample Information		CAM-17 Metals by EPA Method 6010B																
Sample ID	Depth (ft)	Antimony	Arsenic ^(A)	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium ^(V)	Zinc
SB-16	0.5	--	72	270	--	<0.41	2.5	--	--	4.6	0.041	--	--	<3.3	<0.81	--	--	--
SB-17	0.5	--	21	15	--	<0.11	2.1	--	--	8.2	0.019	--	--	<0.88	<0.22	--	--	--
SB-18	0.5	--	43	46	--	0.11	8.5	--	--	7.2	0.014	--	--	<0.72	<0.18	--	--	--
SB-19	0.5	--	5.5	55	--	<0.10	11	--	--	4.9	0.017	--	--	<0.83	<0.21	--	--	--
SB-20	0.5	--	1.7	17	--	<0.090	3.1	--	--	4.5	<0.0085	--	--	<0.72	<0.23	--	--	--
SB-22	0.5	--	140	11	--	<0.10	4.1	--	--	5.1	0.026	--	--	<0.81	<0.20	--	--	--
SB-22-C	0.5	--	160	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
SB-22-D	0.5 4	--	140 1.1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
SB-22-F	0.5	--	8	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
SB-22-G	0.5	--	12	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
SB-22-H	0.5	--	97	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
Environmental Screening Levels (ESLs) ⁽¹⁾ <u>Human Health & Safety Pathways</u> (including groundwater) Residential or Commercial Land Use (construction worker)		11 / 160 (50)	0.067 / 0.31	15,000 / 220,000 (3,000)	16 / 230 (27)	78 / 1,100 (51)	Not Established	23 / 350 (28)	3,100 / 47,000 (14,000)	80 / 320 (160)	13 / 190 (44)	390 / 5,800 (1,800)	820 / 11,000 (86)	390 / 5,800 (1,700)	390 / 5,800 (1,800)	0.78 / 12 (3.5)	390 / 5,800 (470)	23,000 / 350,000 (110,000)
"Tier 1 ESL" (all possible pathways & land uses) Basis = Human Health (HH), Leachability (L), Ecologic (Eco), or Odor (O)		11 (HH)	0.067 (HH)	390 (ECO)	5 (ECO)	1.9 (ECO)	160 (ECO)	23 (HH)	180 (ECO)	32 (ECO)	13 (HH)	6.9 (ECO)	86 (HH)	2.4 (ECO)	25 (ECO)	0.78 (HH)	18 (ECO)	340 (ECO)
DTSC-Modified Screening Levels ⁽²⁾ (for human health risk) Residential or Commercial Land Use		31 / 470	0.11 / 0.36	15,000 / 220,000	15 / 210	5.2 / 7.3	36,000 / 170,000	23 / 350	3,100 / 47,000	80 / 320	1.0 / 4.4	390 / 5,800	490 / 3,100	390 / 5,800	390 / 1,500	0.78 / 12	390 / 1,000	23,000 / 350,000

Bureau Veritas (2014) Before - Cleanup

Table 2 (archived)

Soil Sample Analytical Results

Metals Analysis (CAM 17)

Former Scotts Valley Airport, Scotts Valley

All soil results are in milligrams per Kilogram (mg/Kg) - unless stated otherwise

Sample Information		CAM-17 Metals by EPA Method 6010B																
Sample ID	Depth (ft)	Antimony	Arsenic ^(A)	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium ^(V)	Zinc
SB-23	0.5	--	2.3	48	--	<0.095	10	--	--	2.7	<0.0091	--	--	<0.76	<0.23	--	--	--
SB-25	0.5	--	3.5	46	--	<0.12	7.3	--	--	8.4	0.028	--	--	<0.94	<0.24	--	--	--
SB-26	0.5	--	2.4	57	--	<0.12	8	--	--	2.4	0.011	--	--	<0.94	<0.24	--	--	--
SB-27	0.5	--	1.4	48	--	<0.11	7.5	--	--	3.0	0.011	--	--	<0.84	<0.21	--	--	--
SB-29	0.5	--	0.89	21	--	<0.095	4.2	--	--	2.4	0.022	--	--	<0.76	<0.19	--	--	--
SB-30	0.5	--	4	120	--	<0.39	23	--	--	4.8	0.019	--	--	<3.1	<0.78	--	--	--
SB-31	0.5	--	2.5	61	--	<0.087	9.4	--	--	4.8	0.019	--	--	<0.69	<0.17	--	--	--
SB-32	0.5	--	2.4	46	--	<0.091	8.8	--	--	4	0.014	--	--	<0.73	<0.18	--	--	--
SB-33	0.5	--	5.9	39	--	<0.12	6.7	--	--	5.9	0.1	--	--	<0.95	<0.24	--	--	--
SB-35	0.5	--	2	47	--	<0.069	7.6	--	--	4	0.042	--	--	<0.55	<0.20	--	--	--
Environmental Screening Levels (ESLs) ⁽¹⁾ <u>Human Health & Safety Pathways</u> (including groundwater) Residential or Commercial Land Use (construction worker)		11 / 160 (50)	0.067 / 0.31	15,000 / 220,000 (3,000)	16 / 230 (27)	78 / 1,100 (51)	Not Established	23 / 350 (28)	3,100 / 47,000 (14,000)	80 / 320 (160)	13 / 190 (44)	390 / 5,800 (1,800)	820 / 11,000 (86)	390 / 5,800 (1,700)	390 / 5,800 (1,800)	0.78 / 12 (3.5)	390 / 5,800 (470)	23,000 / 350,000 (110,000)
<u>"Tier 1 ESL"</u> (all possible pathways & land uses) Basis = Human Health (HH), Leachability (L), Ecologic (Eco), or Odor (O)		11 (HH)	0.067 (HH)	390 (ECO)	5 (ECO)	1.9 (ECO)	160 (ECO)	23 (HH)	180 (ECO)	32 (ECO)	13 (HH)	6.9 (ECO)	86 (HH)	2.4 (ECO)	25 (ECO)	0.78 (HH)	18 (ECO)	340 (ECO)
DTSC-Modified Screening Levels ⁽²⁾ (for human health risk) Residential or Commercial Land Use		31 / 470	0.11 / 0.36	15,000 / 220,000	15 / 210	5.2 / 7.3	36,000 / 170,000	23 / 350	3,100 / 47,000	80 / 320	1.0 / 4.4	390 / 5,800	490 / 3,100	390 / 5,800	390 / 1,500	0.78 / 12	390 / 1,000	23,000 / 350,000

(see notes on next page)

Table 2 (archived)

Soil Sample Analytical Results

Metals Analysis (CAM 17)

Former Scotts Valley Airport, Scotts Valley

All soil results are in milligrams per Kilogram (mg/Kg) - unless stated otherwise

Sample Information		CAM-17 Metals by EPA Method 6010B																
Sample ID	Depth (ft)	Antimony	Arsenic ^(A)	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium ^(V)	Zinc

Notes:

BOLD =	A laboratory result was detected (i.e., detected above the <i>Reported Detection Limit</i> (RDL)).
BOLD =	Lab result was detected at or above the ESL or DTSC Residential Land Use Threshold .
BOLD =	Lab result was detected at or above the ESL or DTSC Commercial Land Use or Construction Worker Threshold .
BOLD =	Lab result was detected at a concentration that is at or above the most conservative Tier 1 threshold
BOLD =	Lab result was detected above the Commercial Land Use ESL but below the Naturally Occuring (background) Concentration

1 = Environmental Screening Levels (ESLs): Regional Water Quality Control Board (San Francisco Bay Region) guideline document: *Screening for Environmental Concerns at Sites With Contaminated Soil and Groundwater* (Final version, 2019). The ESLs are intended to provide quantitative risk-based guidance on whether further assessment or remediation of contamination is warranted

TIER 1 ESL = The most conservative Environmental Screening Level (ESL) across all potential pathways including leaching, human health, ecologic ("Terrestrial Habitat"), volatilization (inhalation).

L = Indicates the lowest ESL is based on a **potential Leaching pathway** (for groundwater protection).

HH = Indicates the lowest ESL is based on a **potential Human Health & Safety Pathway** (ingestion, inhalation, dermal).

ECO = Indicates the lowest ESL is based on a **potential Terrestrial Habitat pathway**.

2 = CA DTSC Soil Screening Levels: From the California Department of Toxic Substances Control (DTSC), Office of Human and Ecological Risk (HERO), Human Health Risk Assessment (HHRA) Note Number 3, Table 1, April 2019. **If no DTSC screening level is established then the corresponding US EPA RSL is provided.**

US EPA Region 9 Soil Regional Screening Levels (RSLs): From [US EPA Regional Screening Levels for Soil](https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables) (<https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables>), last updated November-2019 using the Summary Table [based on Carcinogenic Target Risk (TR) =1E-6, Noncancer Hazard Index (HI) =1.0].

TTLC = Total Concentration Limit (mg/kg)

STLC = Soluble Concentration Limit (mg/L)

ND = Not Detected at the laboratory's detection limit.

NE = Not Established

'-- = Not Analyzed

J = Laboratory reports that the detection value is between MDL and RDL, and should be considered an estimate.

A = Arsenic: Multiple studies in the Santa Cruz County region show that naturally-occurring Arsenic concentrations typically fall within range of 4-to-12 mg/kg .

V = Vanadium: There is no local study that has established the naturally-occurring Vanadium concentrations in the Santa Cruz County region. However, the average Vanadium concentration in a study of California soils was calculated to be 112 mg/kg (Source: *Background Concentrations of Trace and Major Elements in California Soils* , Kearny Foundation 1993).

^ = Method Detection Limit is used due to Reported Detection Limit greater than established threshold.

< = A "less than" symbol indicates no detectable concentrations (i.e., the laboratory did not detect the contaminant at the concentration shown).

RDL = Reported Detection Limit = is the laboratory-determined value that is 2 to 5 times above the Method Detection Limit (MDL) that can be reproduced in a manner that results in a 99% confidence level and is both accurate and precise.

Weber Hayes 2021
Before - Cleanup

Table 3: Summary of Soil Analytical Results
CAM 17 Metals Analysis & TPH

Sample Information			CAM-17 Metals by EPA Method 6010B																	Total Petroleum Hydrocarbons EPA Method 8260B/8015M		
Investigation Date	Sample ID	Depth (ft)	Antimony	Arsenic*	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc	TPH as DIESEL (C12-C22)	TPH as MOTOR OIL (C22-C32)	TPH as TAR/ASPHALT (C32-C40)
Weber-Hayes Environmental Investigation May 17, 2021 to May 20, 2021	B-1	0.5	<2.16	<2.16	31.2	0.251	0.0577 J	6.17	1.17	1.83 J	1.23	0.0280 J	<0.540	2.09 J	<2.16	<1.08	<2.16	6.31	6.01	<4.32	<4.32	<4.32
		1.5	<2.57	1.26 J	36.3	0.210 J	0.169 J	8.56	1.49	3.56	15.6	<0.0513	0.265 J	3.92	<2.57	<1.28	<2.57	10.2	21	5.06 J	15.7	18.7
	B-2	0.5	<2.05 J6	3.15	43.5	0.26	0.201 J	8.02	1.81	3.65	12.9	<0.0410	0.368 J	3.98	<2.05	<1.03	<2.05	12.5	23.7	5.13	22.7	33.1
		1.5	<2.08	3.49	38	0.212	0.160 J	8.26	1.5	3.24	14.8	0.0193 J	0.64	3.84	<2.08	<1.04	<2.08	9.58	20	6.67 J	67	80.7
	B-3	0.5	0.658 J	5.11	59.4	0.279	0.362 J	19.7	3.32	8.52	12.1	0.0275 J	2.08	8.04	<2.14	<1.07	<2.14	20.1	34.5	8.12	60.6	72.5
		1.5	<2.21	<2.21	25.4	0.184 J	<0.553	5.67	0.464 J	1.92 J	3.27	<0.0443	0.228 J	1.75 J	<2.21	<1.11	<2.21	6.7	5.45 J	1.08 J	5.84	4.59
	B-4	0.5	<2.10	0.913 J	39.3	0.241	0.142 J	8.48	1.25	3.4	5.46	<0.0421	0.325 J	3.24	<2.10	<1.05	<2.10	10.4	14	4.41	17.9	22.6
		1.5	<2.14	<2.14	27.4	0.236	<0.536	6.3	0.552 J	1.59 J	0.9	<0.0428	<0.536	1.72 J	<2.14	<1.07	<2.14	7.04	5.52	<4.28	<4.28	1.86 J
	B-5	0.5	<2.13	0.576 J	32.4	0.202 J	<0.533	6.79	0.631 J	2.38	4.4	<0.0426	0.221 J	2.09 J	<2.13	<1.07	<2.13	7.47	9.23	2.58 J	8.51	9.72
		1.5	<2.30	<2.30	26.7	0.143 J	<0.575	5.13	0.487 J	1.43 J	0.805	0.0211 J	<0.575	1.36 J	<2.30	<1.15	<2.30	5.9	4.19 J	<4.60	<4.60	2.96 J
	B-6	0.5	<2.14	15.6	42.9	0.336	0.117 J	10.5	2.24	3.64	3.42	<0.0428	0.696	4.48	<2.14	<1.07	<2.14	12.9	14.6	7.32	34.5	42
		1.5	0.714 J	8.53	66.7	0.402	0.0882 J	16.3	2.59	5.49	3.35	<0.0478	1.01	6.92	<2.39	<1.20	<2.39	19.3	16.2	2.93 J	12.3	12.2
	B-7	0.5	<2.35	2.57	27.6	0.155 J	0.157 J	6.73	0.769 J	2.42	3.09	<0.0471	0.483 J	2.44	<2.35	<1.18	<2.35	7.71	8.25	1.04 J	4.93	5.74
		1.5	<2.24	3.46	39.2	0.276	0.0547 J	11.3	0.824 J	3.11	2.78	<0.0449	2.23	2.47	<2.24	<1.12	<2.24	18.9	8.3	<4.49	<4.49	2.29 J
	B-8	0.5	<2.30	2.28 J	53.7	0.25	0.161 J	12.5	2.19	5.17	4.47	<0.0461	0.478 J	6.73	<2.30	<1.15	<2.30	12.8	19.9	7.92	29.4	47.3
		1.5	<2.24	<2.24	27.4	0.169 J	<0.560	6.12	0.614 J	1.86 J	1.24	<0.0448	0.223 J	1.81 J	<2.24	<1.12	<2.24	6.43	6.29	<4.48	2.32 J	2.41 J
B-9	0.5	<2.14	0.696 J	32.6	0.184 J	0.0602 J	7.59	1.11	2.44	3.06	0.0215 J	0.256 J	2.62	<2.14	<1.07	<2.14	9.37	8.56	1.94 J	9.02	12.2	
DUP-B	0.5	<2.09	5.16	61.1	0.364	0.0666 J	10.8	1.86	5.2	7.59	<0.0418	1.42	5.09	<2.09	<1.04	<2.09	21.7	17.9	39.0 J	319	345	
B-9	1.5	<2.11	<2.11	20.1	0.125 J	<0.527	4.07	0.494 J	1.22 J	0.856	<0.0421	0.365 J	0.961 J	<2.11	<1.05	<2.11	6.56	2.96 J	<4.21	<4.21	<4.21	
B-10	0.5	<2.09	4.33	58.9	0.307	0.0892 J	11.3	1.88	3.87	6.49	0.0276 J	0.924	5.42	<2.09	<1.05	<2.09	14.4	14.7	6.04	27.4	34.2	
	1.5	<2.17	1.02 J	38.4	0.263	0.0551 J	8.19	1.61	2.26	1.55	<0.0434	0.161 J	2.48	<2.17	<1.08	<2.17	8.83	6.56	<4.34	2.30 J	3.16 J	
DTSC-Modified Screening Levels ^[2] (for human health risk) Residential or Commercial Land Use			31 / 470	0.11 / 0.36	15,000 / 220,000	15 / 210	5.2 / 7.3	36,000 / 170,000	23 / 350	3,100 / 47,000	80 / 320	1.0 / 4.4	390 / 5,800	490 / 3,100	390 / 5,800	390 / 1,500	0.78 / 12	390 / 1,000	23,000 / 350,000	NE	NE	NE
Environmental Screening Levels (ESLs) ^[3] Residential or Commercial Land Use (construction worker)			11 / 160 (50)	0.067 / 0.31	15,000 / 220,000 (3,000)	16 / 230 (27)	78 / 1,100 (51)	Not Established	23 / 350 (28)	3,100 / 47,000 (14,000)	80 / 320 (160)	13 / 190 (44)	390 / 5,800 (1,800)	820 / 11,000 (86)	390 / 5,800 (1,700)	390 / 5,800 (1,800)	0.78 / 12 (3.5)	390 / 5,800 (470)	23,000 / 350,000 (110,000)	260 / 1,200 / (1,100)	12,000 / 180,000 / (54,000)	NE
"Tier 1 ESL" (all possible pathways & land uses) Basis = Human Health (HH)			11 (HH)	0.067 (HH)	3,000 (HH)	16 (HH)	51 (HH)	Not Established	23 (HH)	14,000 (HH)	80 (HH)	13 (HH)	390 (HH)	86 (HH)	390 (HH)	390 (HH)	0.78 (HH)	390 (HH)	23,000 (HH)	260 (HH)	5,100 (GC)	NE

Weber Hayes 2021
Before - Cleanup

Table 3: Summary of Soil Analytical Results
CAM 17 Metals Analysis & TPH

Sample Information			CAM-17 Metals by EPA Method 6010B																	Total Petroleum Hydrocarbons EPA Method 8260B/8015M		
Investigation Date	Sample ID	Depth (ft)	Antimony	Arsenic*	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc	TPH as DIESEL (C12-C22)	TPH as MOTOR OIL (C22-C32)	TPH as TAR/ASPHALT (C32-C40)
Weber-Hayes Environmental Investigation May 17, 2021 to May 20, 2021	B-11	0.5	0.658 J	3.43	171	0.546	0.0941 J	18.8	2.95	6.43	4.45	<0.0476	1.16	11	0.951 J	<1.19	<2.38	22.3	24.3	<4.76	<4.76	2.97 J
		1.5	<2.38	<2.38	41.8	0.198 J	<0.595	5.84	0.470 J	2.15 J	3.37	<0.0476	0.345 J	1.73 J	<2.38	<1.19	<2.38	6.89	6.26	1.39 J	5.63	4.89 B
	B-12	0.5	0.719 J	2.19	65.2	0.326	0.141 J	11.2	1.74	5.13	7.23	<0.0424	1.05	4.99	<2.12	<1.06	<2.12	14.7	18.1	8.23	35.7	40.6
	DUP-C	0.5	<2.11	3	57.8	0.313	0.0516 J	10.1	1.5	4.42	6.23	<0.0423	1.16	4.15	<2.11	<1.06	<2.11	13.9	14.6	11.3	89.7	91.6
	B-12	1.5	0.617 J	0.661 J	45.4	0.271	0.0894 J	7.8	0.787 J	2.79	2.58	<0.0430	0.488 J	2.39	<2.15	<1.07	<2.15	9.15	6.81	2.41 J	7.13	8.23 B
	B-13	0.5	<2.14	1.59 J	68.1	0.307	0.103 J	9.57	1.74	3.62	4.24	<0.0429	0.543	3.36	<2.14	<1.07	<2.14	11.8	10.9	32.6	160	176
		1.5	<2.19	0.771 J	62.5	0.262	0.0650 J	8	1.78	2.23	1.74	<0.0438	0.328 J	2.35	<2.19	<1.10	<2.19	10.4	6.07	4.42	16	15.7 B
	B-14	0.5	0.631 J	3.8	67.1	0.385	0.176 J	13.6	3.32	6.82	5.93	<0.0423	1.22	7.16	0.878 J	<1.06	<2.11	22.3	26.5	9.74	59	71
		1.5	<2.21	0.901 J	42.3	0.225	<0.552	7.09	2.6	2.48	12.7	<0.0442	0.363 J	2.39	<2.21	<1.10	<2.21	8.64	7.34	2.08 J	7.47	8.10 B
	DUP-A	1.5	<2.23	2.66	60	0.302	<0.557	10.3	1.5	4.01	5.03	<0.0445	1.06	5.12	<2.23	<1.11	<2.23	13	13.3	2.79 J	12.8	13.5 B
	B-15	0.5	<2.43	0.914 J	71.4	0.334	0.0894 J	10.8	2.01	3.56	2.61	<0.0485	0.507 J	3.49	<2.43	<1.21	<2.43	12.9	10.1	1.73 J	2.33 J	4.20 B J
		1.5	<2.26	1.71 J	55.8	0.336	0.0828 J	10.9	0.906 J	3.28	2.69	<0.0453	0.674	2.9	<2.26	<1.13	<2.26	13.5	7.97	1.09 J	3.10 J	3.52 B J
	B-16	0.5	0.698 J	2.23	87.4	0.451	0.114 J	13.3	2.2	5.5	4.87	<0.0433	0.735	5.07	<2.16	<1.08	<2.16	16.5	15.4	13.8	73.7	87.6
		1.5	<2.22	1.08 J	76.5	0.34	<0.554	11	1.48	3.65	2.23	<0.0443	0.466 J	3.76	<2.22	<1.11	<2.22	14.7	9.6	3.49 J	15.7	17.0 B
	B-17	0.5	0.767 J	2.98	80.6	0.363	0.0943 J	11.1	2.39	4.89	5.1	<0.0526	0.864	4.9	<2.63	<1.32	<2.63	14.9	15.3	2.75 J	7.8	12.3 B
		1.5	0.692 J 6	1.29 J	67	0.322	0.0598 J	10.7	2.02	3.69	1.84	<0.0483	0.675	4.02	<2.42	<1.21	<2.42	12.9	11	4.13 J	21	26.8
	B-18	0.5	<2.39	4.66	113	0.572	0.145 J	26.9	2.37	6.93	3.27	0.0235 J	3.1	10.3	<2.39	<1.19	<2.39	33.5	21.6	1.13 B J	<4.78	<4.78
		1.5	0.923 J	2.8	79.6	0.367	0.129 J	10.9	1.99	4.65	4.29	<0.0474	1.04	4.27	<2.37	<1.19	<2.37	15	11.5	1.91 J	6.85	5.75
	B-19	0.5	0.601 J 6	1.77 J	65.5	0.295	0.105 J	10.4	1.38	4.57	3.54	<0.0419	0.432 J	3.69	<2.10	<1.05	<2.10	13.7	11.7	1.35 J	6.81	7.62
		1.5	<2.39	2.20 J	58.1	0.237 J	<0.597	15.8	0.750 J	2.21 J	1.76	<0.0477	0.221 J	3.63	1.01 J	<1.19	<2.39	15.9	8.94	2.36 J	18.3	16.7
DUP-D		1.5	<2.17	2.13 J	74.1	0.276	<0.542	14.6	0.993 J	2.85	3.32	<0.0434	0.448 J	3.89	<2.17	<1.08	<2.17	16.1	9.51	0.989 J	1.47 J	2.20 J
B-20	0.5	0.809 J	3.6	57.2	0.358	0.107 J	12.8	1.68	5.18	3.22	<0.0462	1.05	5.32	<2.31	<1.16	<2.31	16.6	13.5	79.2 J	391	323	
	1.5	<2.48	1.81 J	80.3	0.435	0.133 J	13.5	1.96	4.94	2.3	<0.0496	0.906	5.42	<2.48	<1.24	<2.48	16.4	13.8	1.02 J	2.50 J	1.99 J	
DTSC-Modified Screening Levels ⁽²⁾ (for human health risk) Residential or Commercial Land Use			31 / 470	0.11 / 0.36	15,000 / 220,000	15 / 210	5.2 / 7.3	36,000 / 170,000	23 / 350	3,100 / 47,000	80 / 320	1.0 / 4.4	390 / 5,800	490 / 3,100	390 / 5,800	390 / 1,500	0.78 / 12	390 / 1,000	23,000 / 350,000	NE	NE	NE
Environmental Screening Levels (ESLs) ⁽¹⁾ Residential or Commercial Land Use (construction worker)			11 / 160 (50)	0.067 / 0.31	15,000 / 220,000 (3,000)	16 / 230 (27)	78 / 1,100 (51)	Not Established	23 / 350 (28)	3,100 / 47,000 (14,000)	80 / 320 (160)	13 / 190 (44)	390 / 5,800 (1,800)	820 / 11,000 (86)	390 / 5,800 (1,700)	390 / 5,800 (1,800)	0.78 / 12 (3.5)	390 / 5,800 (470)	23,000 / 350,000 (110,000)	260 / 1,200 / (1,100)	12,000 / 180,000 / (54,000)	NE
"Tier 1 ESL" (all possible pathways & land uses) Basis = Human Health (HH)			11 (HH)	0.067 (HH)	3,000 (HH)	16 (HH)	51 (HH)	Not Established	23 (HH)	14,000 (HH)	80 (HH)	13 (HH)	390 (HH)	86 (HH)	390 (HH)	390 (HH)	0.78 (HH)	390 (HH)	23,000 (HH)	260 (HH)	5,100 (GC)	NE

Weber Hayes 2021
Before - Cleanup

Table 3: Summary of Soil Analytical Results
CAM 17 Metals Analysis & TPH

Sample Information			CAM-17 Metals by EPA Method 6010B																	Total Petroleum Hydrocarbons EPA Method 8260B/8015M			
Investigation Date	Sample ID	Depth (ft)	Antimony	Arsenic*	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc	TPH as DIESEL (C12-C22)	TPH as MOTOR OIL (C22-C32)	TPH as TAR/ASPHALT (C32-C40)	
Weber-Hayes Environmental Investigation May 17, 2021 to May 20, 2021	B-21	0.5	1.02 J	2.09 J	74	0.376	0.0840 J	13.2	2.51	5.56	2.86	<0.0419	1.06	5.69	<2.10	<1.05	<2.10	16	16.5	0.814 J	1.77 J	2.27 J	
		1.5	0.624 J	1.93 J	83.9	0.377	<0.526	14.7	1.91	4.88	3.02	0.0218 J	1.08	5.87	1.44 J	<1.05	<2.11	16.5	16.7	0.875 J	<4.21	1.65 J	
	B-22	0.5	<2.24	2.58	93.2	0.42	<0.560	14.5	3.26	5.23	3.4	<0.0448	1.1	6.45	1.55 J	<1.12	<2.24	18.7	17.9	10.6	46.2	32.8	
		1.5	1.16 J	2.55	68.9	0.451	<0.560	17.4	1.93	4.47	3.14	<0.0448	0.826	6.89	0.972 J	<1.12	<2.24	20.3	17.3	1.00 J	4.02 J	3.02 J	
	B-23	0.5	1.03 J	2.44	95.5	0.434	0.146 J	15.5	3.83	6.7	3.84	<0.0449	1.18	6.7	<2.25	<1.12	<2.25	20.7	18.5	<4.49	<4.49	1.52 J	
		1.5	<2.43	1.64 J	78.2	0.292	<0.607	4.48	2.14	3.03	2.74	<0.0486	0.546 J	2.20 J	<2.43	<1.21	<2.43	9.63	7.35	<4.86	<4.86	<4.86	
	B-24	0.5	0.822 J	15.9	60	0.317	0.222 J	11.9	2.01	7.5	5.73	0.0333 J	1.4	5.33	<2.16	<1.08	<2.16	16.2	30	4.42	26.2	27.3	
		1.5	1.03 J	2.43	57.9	0.362	0.149 J	13.5	1.83	5.71	3.84	<0.0439	1.16	5.67	<2.19	<1.10	<2.19	17.1	18.8	3.38 J	24.8	21.5	
	B-25	0.5	0.894 J	5.71	67.4	0.192 J	0.311 J	15.8	6.29	18.9	3.12	0.0242 J	1.27	8.34	<2.11	<1.05	<2.11	41.8	39.3	40.9 J	365	376	
	DUP-E	0.5	0.670 J	53.6	37.4	0.267	0.103 J	8.92	1.97	5.65	5.81	0.0559	1.35	4.14	<2.09	<1.05	<2.09	14.8	26	72.5 J	608	561	
	B-25	1.5	<2.25	4.91	77.3	0.349	0.176 J	14	2.18	6.07	3.85	<0.0450	1.3	5.75	<2.25	<1.12	<2.25	17.7	19	6.59	55.6	46.7	
	B-26	0.5	<2.22	1.55 J	63.5	0.309	0.158 J	12.1	1.98	6.06	4.8	<0.0444	1.02	5.07	<2.22	<1.11	<2.22	16.2	17.3	2.86 J	20.7	21.5	
		1.5	<2.19	1.58 J	73.3	0.341	0.107 J	12.2	1.92	6.67	2.2	<0.0437	0.885	5.22	0.983 J	<1.09	<2.19	16.5	15.9	1.05 J	5.97	5.44	
	B-27	0.5	0.587 J	1.08 J	58.4	0.252	0.169 J	13.7	3.37	6.13	5.15	0.0215 J	0.553	7.15	<2.07	<1.04	<2.07	18.3	25.3	24.8 J	297	266	
		1.5	<2.50	<2.50	47.3	0.205 J	0.0781 J	7.45	1.24 J	2.34 J	5.82	<0.0501	0.188 J	2.81	<2.50	<1.25	<2.50	9.56	10.5	<5.01	<5.01	<5.01	
	B-28	0.5	1.00 J	2.38	96.2	0.322	0.225 J	18.4	4.3	8.7	6.72	0.133	1.13	7.95	<2.34	<1.17	<2.34	24	26.1	4.73 J	47.3	43.7	
		1.5	<2.45	4.04	82.8	0.314	0.302 J	15.6	4.37	9.98	10.9	0.0656	1.51	8.25	<2.45	<1.23	0.484 J	21.9	37.7	23.3 J	212	152	
	B-29	0.5	1.24 J 6	2.85	83.4	0.46	0.212 J	25.7	11.2 O1	11.7	6.78	<0.0433 J3	0.240 J	16.7 O1	<2.16	<1.08	<2.16	49.5	54.3	3.47 J	26.4	23.8	
		1.5	<2.68	<2.68	121	0.434	0.502 J	26.5	7.5	10.4	4.75	<0.0537	1.33	16.1	<2.68	<1.34	<2.68	27.2	37.4	<5.37	<5.37	<5.37	
	B-30	0.5	0.945 J	15.7	66.1	0.285	0.227 J	11.7	4.24	8.72	9.49	0.0432 J	1.25	8.81	<2.17	<1.08	<2.17	26	37.9	83.6 J	1,110	706	
		1.5	0.613 J	1.42 J	53.5	0.28	0.308 J	15.8	4.3	7.79	5.28	0.0287 J	0.636	7.66	<2.21	<1.11	<2.21	21.7	25.6	27.7 J	290	176	
DTSC-Modified Screening Levels ^[2] (for human health risk) Residential or Commercial Land Use			31 / 470	0.11 / 0.36	15,000 / 220,000	15 / 210	5.2 / 7.3	36,000 / 170,000	23 / 350	3,100 / 47,000	80 / 320	1.0 / 4.4	390 / 5,800	490 / 3,100	390 / 5,800	390 / 1,500	0.78 / 12	390 / 1,000	23,000 / 350,000	NE	NE	NE	
Environmental Screening Levels (ESLs) ^[3] Residential or Commercial Land Use (construction worker)			11 / 160 (50)	0.067 / 0.31	15,000 / 220,000 (3,000)	16 / 230 (27)	78 / 1,100 (51)	Not Established	23 / 350 (28)	3,100 / 47,000 (14,000)	80 / 320 (160)	13 / 190 (44)	390 / 5,800 (1,800)	820 / 11,000 (86)	390 / 5,800 (1,700)	390 / 5,800 (1,800)	0.78 / 12 (3.5)	390 / 5,800 (470)	23,000 / 350,000 (110,000)	260 / 1,200 / (1,100)	12,000 / 180,000 / (54,000)	NE	
"Tier 1 ESL" ^[4] (all possible pathways & land uses) Basis = Human Health (HH)			11 (HH)	0.067 (HH)	3,000 (HH)	16 (HH)	51 (HH)	Not Established	23 (HH)	14,000 (HH)	80 (HH)	13 (HH)	390 (HH)	86 (HH)	390 (HH)	390 (HH)	0.78 (HH)	390 (HH)	23,000 (HH)	260 (HH)	5,100 (GC)	NE	

Weber Hayes 2021
Before - Cleanup

Table 3: Summary of Soil Analytical Results
CAM 17 Metals Analysis & TPH

Sample Information			CAM-17 Metals by EPA Method 6010B																	Total Petroleum Hydrocarbons EPA Method 8260B/8015M			
Investigation Date	Sample ID	Depth (ft)	Antimony	Arsenic*	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc	TPH as DIESEL (C12-C22)	TPH as MOTOR OIL (C22-C32)	TPH as TAR/ASPHALT (C32-C40)	
Weber-Hayes Environmental Investigation May 17, 2021 to May 20, 2021	B-31	0.5	0.756 J	1.24 J	81.4	0.326	0.163 J	21.3	3.17	8.77	5.29	0.0637	0.499 J	8.09	<2.17	<1.09	<2.17	22.4	21.7	7.70 J	67.3	86.1	
		1.5	<2.21	1.25 J	101	0.302	0.191 J	17.9	5.14	10.6	7.19	0.0972	0.687	8.11	<2.21	<1.11	<2.21	29.9	25.2	9.00 J	105	92.4	
	DUP-F	1.5	<2.23	5.89	82.1	0.259	0.149 J	10.9	1.87	6.67	6.95	<0.0445	0.911	5.34	<2.23	<1.11	<2.23	14.8	26.2	1.61 J	19.5 B J	91.8	
	B-32	0.5	<2.12	1.49 J	67.9	0.292	0.275 J	15.7	3.75	9.06	5.01	0.0544	0.808	7.88	<2.12	<1.06	<2.12	21.1	31.2	16.9 J	228	206	
		1.5	<2.22	<2.22	107	0.401	0.150 J	18.8	2.95	5.2	4.51	0.0738	0.480 J	7.68	<2.22	<1.11	<2.22	20.8	18.4	4.40 J	48	50.4	
	B-33	0.5	0.749 J	10.5	41.3	0.255	0.151 J	6.41	3.51	4.65	4.92	0.0472	1.07	4.77	<2.17	<1.08	<2.17	18.7	27.1	52.4 J	599	449	
		1.5	<2.86	<2.86	99	0.399	0.184 J	14.6	4.2	6.26	14.9	0.0285 J	0.710 J	7.33	<2.86	<1.43	<2.86	20.5	25.1	<5.78	7.99	9.22	
	B-34	0.5	<2.40	<2.40	73.2	0.234 J	0.226 J	14.7	3.41	8.96	3.64	0.306	1.34	5.89	<2.40	<1.20	0.535 J	17.3	17.7	1.55 J	16.1	19.7	
		1.5	0.881 J	<2.49	59.1	0.312	0.0808 J	13	2.42	4.59	2.93	<0.0498	0.714	5.47	<2.49	<1.25	0.609 J	16	14.6	10.8	47.7	22.8	
	B-35	0.5	0.738 J	6.38	55.7	0.31	0.610 J	13.1	4.22	6.77	3.97	0.0287 J	0.764	9.16	<2.52	<1.26	<2.52	22.7	35.7	<5.03	4.85 J	4.72 J	
		1.5	1.31 J	<2.14	97.2	<0.214	0.222 J	13.2	10.6	4.71	21.7	0.0330 J	1.57	4.9	<2.14	<1.07	<2.14	45.2	64.4	<4.27	4.97	4.26 J	
	B-36	0.5	0.696 J	5.98	32.3	0.237	0.164 J	8.05	1.5	4.42	10.3	0.0360 J	0.947	2.86	<2.19	<1.10	<2.19	10.3	86.5	<4.39	1.72 J	1.69 J	
		1.5	<2.22	<2.22	21.5	0.173 J	0.0795 J	4.74	0.473 J	1.68 J	1.87	<0.0445	0.987	1.75 J	<2.22	<1.11	0.452 J	4.8	35.3	<4.45	<4.45	<4.45	
	B-37	0.5	<2.41	<2.41	20.7	0.159 J	0.0801 J	4.36	0.396 J	1.51 J	2.75	0.0218 J	0.441 J	1.55 J	<2.41	<1.20	<2.41	6.03	5.73 J	1.46 J	11.1	10.9	
		1.5	<2.15	0.652 J	24.7	0.188 J	0.0561 J	4.69	0.260 J	1.26 J	1.71	<0.0431	0.234 J	1.35 J	<2.15	<1.08	<2.15	5.6	3.63 J	<4.31	2.64 J	3.26 J	
	B-38	0.5	<2.17	7.36	59.5	0.286	0.392 J	17.3	2.8	11.2	12.1	0.0217 J	2.37	7.96	<2.17	<1.08	<2.17	22.1	34.8	9.41 J	91.1	104	
		1.5	<2.18	0.795 J	23.3	0.151 J	0.0666 J	4.68	0.334 J	1.69 J	2.2	<0.0437	0.662	1.52 J	<2.18	<1.09	<2.18	5.47	5.37 J	<4.37	2.24 J	3.48 J	
	B-39	0.5	<2.11	<2.11	20.8	0.162 J	0.104 J	5.58	0.482 J	2.25	3.01	<0.0422	0.629	1.86 J	<2.11	<1.06	<2.11	6.75	6.2	1.19 J	9.51	12.8	
		1.5	<2.17	2.59	18.5	0.312	0.117 J	6.58	0.372 J	2.02 J	1.79	<0.0435	1.79	1.84 J	<2.17	<1.09	<2.17	18.7	5.05 J	<4.35	<4.35	1.61 J	
	B-40	0.5	<2.28	6.97	142	0.215 J	0.436 J	29.7	4.12	16.2	8.28	0.0369 J	8.51	9.25	<2.28	<1.14	<2.28	44.1	51.7	14.9 J	153	139	
		1.5	<2.35 J6	3.48	26.7	0.233 J	0.323 J	7.56	1.49	4.02	7.64	<0.0471	1.03	5.79	<2.35	<1.18	<2.35	10.8	16.8	1,870	353	322	
		2.5	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	<4.36	--	--		
DTSC-Modified Screening Levels ⁽²⁾ (for human health risk) Residential or Commercial Land Use			31 / 470	0.11 / 0.36	15,000 / 220,000	15 / 210	5.2 / 7.3	36,000 / 170,000	23 / 350	3,100 / 47,000	80 / 320	1.0 / 4.4	390 / 5,800	490 / 3,100	390 / 5,800	390 / 1,500	0.78 / 12	390 / 1,000	23,000 / 350,000	NE	NE	NE	
Environmental Screening Levels (ESLs) ⁽¹⁾ Residential or Commercial Land Use (construction worker)			11 / 160 (50)	0.067 / 0.31	15,000 / 220,000 (3,000)	16 / 230 (27)	78 / 1,100 (51)	Not Established	23 / 350 (28)	3,100 / 47,000 (14,000)	80 / 320 (160)	13 / 190 (44)	390 / 5,800 (1,800)	820 / 11,000 (86)	390 / 5,800 (1,700)	390 / 5,800 (1,800)	0.78 / 12 (3.5)	390 / 5,800 (470)	23,000 / 350,000 (110,000)	260 / 1,200 / (1,100)	12,000 / 180,000 / (54,000)	NE	
"Tier 1 ESL" (all possible pathways & land uses) Basis = Human Health (HH)			11 (HH)	0.067 (HH)	3,000 (HH)	16 (HH)	51 (HH)	Not Established	23 (HH)	14,000 (HH)	80 (HH)	13 (HH)	390 (HH)	86 (HH)	390 (HH)	390 (HH)	0.78 (HH)	390 (HH)	23,000 (HH)	260 (HH)	5,100 (GC)	NE	

Weber Hayes 2021
Before - Cleanup

Table 3: Summary of Soil Analytical Results
CAM 17 Metals Analysis & TPH

Sample Information			CAM-17 Metals by EPA Method 6010B																	Total Petroleum Hydrocarbons EPA Method 8260B/8015M			
Investigation Date	Sample ID	Depth (ft)	Antimony	Arsenic*	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc	TPH as DIESEL (C12-C22)	TPH as MOTOR OIL (C22-C32)	TPH as TAR/ASPHALT (C32-C40)	
Weber-Hayes Environmental Investigation May 17, 2021 to May 20, 2021	B-41	0.5	<2.31	8.43	92.1	0.457	0.792	32.1	3.85	12.3	6.66	0.0263 J	3.4	15.4	<2.31	<1.16	<2.31	31.3	33.7	11.7 J	99.8 J	112	
		1.5	<2.18	3.87	50.8	0.373	0.302 J	13	2.05	5.63	6.94	0.0531	1.34	9.05	<2.18	<1.09	<2.18	16.5	23.6	13.6 J	195	140	
	B-42	0.5	<2.16	5.62	65.6	0.275	0.613	35.6	7.32	28.6	8.1	0.0622	2.13	13.9	<2.16	<1.08	<2.16	54	38.4	10.7 J	95.5	94.1	
		1.5	<2.33	8.41	88	0.368	0.836	25.6	3.5	12.1	7.13	0.07	3.2	11.8	<2.33	<1.17	<2.33	30	34.5	23.7 J	252	238	
	B-43	0.5	<2.26	6.76	87.8	0.372	0.668	28.2	3.42	12.5	8.08	0.147	3.31	11.2	<2.26	<1.13	<2.26	29.7	32.1	9.75 J	114	125	
		1.5	<2.43	4.52	77.3	0.342	0.458 J	22.7	3.37	10.5	7.94	0.0479 J	2.24	9.75	<2.43	<1.22	<2.43	25.3	26.6	<48.6	58.3	71.5	
	B-44	0.5	<2.12	8.63	85.5	0.362	0.609	25	3.98	12.5	8.58	0.0743	2.73	12.1	<2.12	<1.06	<2.12	30.3	34.1	10.9 J	102	105	
		1.5	<2.35	6.19	91.6	0.408	0.674	30.1	3.17	11.1	8.16	0.0954	3.12	15.2	<2.35	<1.17	<2.35	30.5	34.1	39.5 J	280	223	
	B-45	0.5	<2.21	7.19	111	0.375	1.55	25.3	3.41	12.6	7.73	0.0745	2.77	15.3	<2.21	<1.10	<2.21	28.2	32.2	16.5 J	201	198	
		1.5	<2.23	5.56	90	0.386	0.454 J	22.6	3.99	9.05	7.68	0.0649	2.97	12.3	<2.23	<1.11	<2.23	26.1	26.8	9.37 J	108	123	
	B-46	0.5	<2.19	7.41	93.6	0.37	0.634	25.4	4.38	12.2	9.35	0.0391 J	2.69	12.3	<2.19	<1.09	<2.19	33.6	38.7	8.62 J	93.9	106	
		1.5	<2.22	2.97	69.9	0.319	0.376 J	24.7	2.64	9.57	5.62	0.0719	1.67	10.7	<2.22	<1.11	<2.22	25.5	28.7	13.7 J	132	143	
	B-47	0.5	0.592 J	3.17	73.8	0.33	0.307 J	16.2	3.92	8.99	8.06	0.0268 J	1.62	7.3	<2.10	<1.05	<2.10	20.3	28.6	4.15 J	34.4	33.6	
		1.5	0.918 J	5.05	102	0.349	0.519 J	32.5	2.9	13.1	5.26	0.111	4.48	11.3	1.07 J	<1.26	<2.52	29	31.6	<5.03	5.5	7.65	
	B-48	0.5	0.910 J	4.91	201	0.42	0.349 J	14.7	4.76	13.5	6.31	0.0938	0.997	11	<2.23	<1.11	<2.23	25.7	39.6	4.87	33	28.4	
		1.5	<2.10	1.51 J	55.9	0.317	0.135 J	12.5	1.74	4.66	4.48	<0.0420	1.37	4.76	<2.10	<1.05	<2.10	14	14.8	1.15 J	10.6	10	
	B-49	0.5	1.15 J	3.11	70.8	0.284	0.300 J	29.6	3.66	5	11.5	<0.0474	1.13	8.53	<2.37	<1.18	<2.37	23.2	32.2	3.39 J	27.4	21.7	
		1.5	<2.18	2.96	54.5	0.376	0.144 J	13.6	1.63	5.27	3.62	<0.0436	1.71	5.09	0.887 J	<1.09	<2.18	17.5	15.1	<4.36	3.30 J	2.61 J	
	B-50	0.5	<2.15	1.56 J	68.3	0.275	0.150 J	12.3	1.67	4.74	3.04	<0.0430	1.08	5.27	<2.15	<1.07	<2.15	14	16.5	<4.30	<4.30	<4.30	
		1.5	<2.20	1.67 J	59.1	0.210 J	0.0987 J	5.75	1.51	4.14	4.4	<0.0440	0.78	4.54	<2.20	<1.10	<2.20	8.48	14.9	0.835 J	3.61 J	2.49 J	
DTSC-Modified Screening Levels ^[2] (for human health risk) Residential or Commercial Land Use			31 / 470	0.11 / 0.36	15,000 / 220,000	15 / 210	5.2 / 7.3	36,000 / 170,000	23 / 350	3,100 / 47,000	80 / 320	1.0 / 4.4	390 / 5,800	490 / 3,100	390 / 5,800	390 / 1,500	0.78 / 12	390 / 1,000	23,000 / 350,000	NE	NE	NE	
Environmental Screening Levels (ESLs) ^[1] Residential or Commercial Land Use (construction worker)			11 / 160 (50)	0.067 / 0.31	15,000 / 220,000 (3,000)	16 / 230 (27)	78 / 1,100 (51)	Not Established	23 / 350 (28)	3,100 / 47,000 (14,000)	80 / 320 (160)	13 / 190 (44)	390 / 5,800 (1,800)	820 / 11,000 (86)	390 / 5,800 (1,700)	390 / 5,800 (1,800)	0.78 / 12 (3.5)	390 / 5,800 (470)	23,000 / 350,000 (110,000)	260 / 1,200 / (1,100)	12,000 / 180,000 / (54,000)	NE	
"Tier 1 ESL" (all possible pathways & land uses) Basis = Human Health (HH)			11 (HH)	0.067 (HH)	3,000 (HH)	16 (HH)	51 (HH)	Not Established	23 (HH)	14,000 (HH)	80 (HH)	13 (HH)	390 (HH)	86 (HH)	390 (HH)	390 (HH)	0.78 (HH)	390 (HH)	23,000 (HH)	260 (HH)	5,100 (GC)	NE	

Weber Hayes 2021
Before - Cleanup

Table 3: Summary of Soil Analytical Results
CAM 17 Metals Analysis & TPH

Sample Information			CAM-17 Metals by EPA Method 6010B																	Total Petroleum Hydrocarbons EPA Method 8260B/8015M			
Investigation Date	Sample ID	Depth (ft)	Antimony	Arsenic*	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc	TPH as DIESEL (C12-C22)	TPH as MOTOR OIL (C22-C32)	TPH as TAR/ASPHALT (C32-C40)	
Weber-Hayes Environmental Investigation May 17, 2021 to May 20, 2021	B-51	0.5	<2.14	3.58	40.5	0.214 J	<0.536	7.53	1.03 J	5.03	8.59	<0.0429	1.05	2.58	<2.14	<1.07	<2.14	10.4	28.2	1.29 J	18.3	14.2	
		1.5	<2.19	1.85 J	38	0.295	<0.548	10.7	0.941 J	3.16	2.83	<0.0439	1.4	3.48	0.905 J	<1.10	<2.19	10.9	43.9	<4.39	<4.39	<4.39	
	B-52	0.5	1.16 J	5.63	124 J6	0.406	1.25	8.4	2.7	3.88	19.1	<0.0419	1.03	3.51	0.901 J	<1.05	<2.10	22.5	51.8	154	768	483	
		1.5	<2.10	1.95 J	39.4	0.246	0.184 J	8.42	1.16	4.41	3.33	<0.0420	1.01	3.21	<2.10	<1.05	<2.10	10.2	16.7	1.68 J	7.73	6.82	
	S0-1	0.5	--	5.59	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	
		1.5	--	4.74	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	
	S0-2	0.5	--	<2.23	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	
		1.5	--	<2.28	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	
	S0-3	0.5	--	3.49	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	
		1.5	--	0.829 J	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	
	S0-4	0.5	--	6.3	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	
		1.5	--	11.1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	
	S0-5	0.5	--	10.7	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	
		1.5	--	1.88 J	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	
	S0-6	0.5	--	7.66	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	
		1.5	--	2.89	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	
	S0-7	0.5	--	--	--	--	--	--	--	--	6.84	--	--	--	--	--	--	--	--	--	--	--	
		1.5	--	--	--	--	--	--	--	--	6.71	--	--	--	--	--	--	--	--	--	--	--	
DTSC-Modified Screening Levels ⁽²⁾ (for human health risk) Residential or Commercial Land Use			31 / 470	0.11 / 0.36	15,000 / 220,000	15 / 210	5.2 / 7.3	36,000 / 170,000	23 / 350	3,100 / 47,000	80 / 320	1.0 / 4.4	390 / 5,800	490 / 3,100	390 / 5,800	390 / 1,500	0.78 / 12	390 / 1,000	23,000 / 350,000	NE	NE	NE	
Environmental Screening Levels (ESLs) ⁽¹⁾ Residential or Commercial Land Use (construction worker)			11 / 160 (50)	0.067 / 0.31	15,000 / 220,000 (3,000)	16 / 230 (27)	78 / 1,100 (51)	Not Established	23 / 350 (28)	3,100 / 47,000 (14,000)	80 / 320 (160)	13 / 190 (44)	390 / 5,800 (1,800)	820 / 11,000 (86)	390 / 5,800 (1,700)	390 / 5,800 (1,800)	0.78 / 12 (3.5)	390 / 5,800 (470)	23,000 / 350,000 (110,000)	260 / 1,200 / (1,100)	12,000 / 180,000 / (54,000)	NE	
"Tier 1 ESL" (all possible pathways & land uses) Basis = Human Health (HH)			11 (HH)	0.067 (HH)	3,000 (HH)	16 (HH)	51 (HH)	Not Established	23 (HH)	14,000 (HH)	80 (HH)	13 (HH)	390 (HH)	86 (HH)	390 (HH)	390 (HH)	0.78 (HH)	390 (HH)	23,000 (HH)	260 (HH)	5,100 (GC)	NE	

See Notes on Next Page

Weber Hayes 2021
Before - Cleanup

Table 3: Summary of Soil Analytical Results
CAM 17 Metals Analysis & TPH

Sample Information			CAM-17 Metals by EPA Method 6010B																	Total Petroleum Hydrocarbons EPA Method 8260B/8015M		
Investigation Date	Sample ID	Depth (ft)	Antimony	Arsenic*	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc	TPH as DIESEL (C12-C22)	TPH as MOTOR OIL (C22-C32)	TPH as TAR/ASPHALT (C32-C40)

Notes:

BOLD =	A laboratory result was detected (i.e., detected above the <i>Reported Detection Limit</i> (RDL)).
BOLD =	Lab result was detected above the ESL or DTSC Residential Land Use Threshold.
BOLD =	Lab result was detected above the ESL or DTSC Commercial Land Use or Construction Worker Threshold.

1 = Environmental Screening Levels (ESLs): Regional Water Quality Control Board (San Francisco Bay Region) guideline document: *Screening for Environmental Concerns at Sites With Contaminated Soil and Groundwater* (Final version, 2019). The ESLs are intended to provide quantitative risk-based guidance on whether further assessment or remediation of contamination is warranted
<https://www.waterboards.ca.gov/sanfranciscobay/water_issues/programs/ESL/new/ESL_Summary_Tables_24Jan19_Rev1.pdf>

TIER 1 ESL = The most conservative Environmental Screening Level (ESL) across all potential pathways including leaching, human health, ...

L = Indicates the lowest ESL is based on a **potential Leaching pathway** (for groundwater protection).
HH = Indicates the lowest ESL is based on a **potential Human Health & Safety Pathway** (ingestion, inhalation, dermal).
GC = Indicates the lowest ESL is based on a **potential "Gross Contamination"** (i.e. 5,100 mg/kg for TPH Motor Oil)

2 = CA DTSC Soil Screening Levels: From the California Department of Toxic Substances Control (DTSC), Office of Human and Ecological Risk (HERO), Human Health Risk Assessment (HHRA) Note Number 3, Table 1, June 2020. **If no DTSC screening level is established then the corresponding US EPA RSL is provided.**

US EPA Region 9 Soil Regional Screening Levels (RSLs): From *US EPA Regional Screening Levels for Soil* (<https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables>) , last updated May 2020 using the Summary Table [based on Carcinogenic Target Risk (TR) =1E-6, Noncancer Hazard Index (HI) =1.0].

RDL = **Reported Detection Limit** = is the laboratory-determined value that is 2 to 5 times above the Method Detection Limit (MDL) that can be reproduced in a manner that results in a 99% confidence level and is both accurate and precise.

J = Laboratory reports that the detection value is between MDL and RDL, and should be considered an estimate.

ND = Non Detection

NE = Not Established

'- = Not Analyzed

B = The same analyte is found in the associated blank

< = A "less than" symbol indicates no detectable concentrations (i.e., the laboratory **did not** detect the contaminant at the concentration shown).

*= [Arsenic: A site-specific background arsenic concentration of 12.0 mg/kg has been established for an adjoining parcel \(former Suburban Propane property\), which was approved by the County of Santa Cruz Environmental Health Division](#)

Table 4
Summary of Soil Analytical Results
(Total Petroleum Hydrocarbons, Volatile Organic Compounds, and PCBs)
Former Skypark Airport, Scotts Valley
All soil results are in milligrams per Kilogram (mg/Kg)

Weber Hayes 2021
 Before - Cleanup

Sample Information			Laboratory Analytical Results								Polychlorinated Biphenyls (PCBs) by EPA Method 8082	
			Total Petroleum Hydrocarbons EPA Method 8260B/8015M	Volatile Organic Compounds (VOCs) by EPA Method 8260B								
Investigation Date	Sample ID	Depth (ft)	TPH as GASOLINE (C5-12)	Benzene	Toluene	Ethylbenzene	Xylenes	PCE	TCE	Other VOCs		
Weber-Hayes Environmental Investigation May 17, 2021 to May 20, 2021	B-1	0.5	2.16 BJ	<0.00117	<0.00585	<0.00292	0.00125 J	<0.00292	<0.00117	2-Butanone (MEK) = 0.0992 BJ	<0.03	
		1.5	2.37 BJ	<0.00159 J3	<0.00797 J3	<0.00398 J3	<0.0104 J3	<0.00398 J3	<0.00159 J3	2-Butanone (MEK) = 0.108 J	<0.03	
	B-3	0.5	1.48 BJ	<0.00114	<0.00570	<0.00285	<0.00741	<0.00285	<0.00114	2-Butanone (MEK) = 0.0801 J	0.181	
		1.5	1.58 BJ	<0.00121	<0.00607	<0.00303	<0.00789	<0.00303	<0.00121	2-Butanone (MEK) = 0.0903 J	<0.03	
	B-5	0.5	1.49 BJ	<0.00113	<0.00566	<0.00283	<0.00736	<0.00283	<0.00113	2-Butanone (MEK) = 0.0888 J	<0.03	
		1.5	<3.36	<0.00135	<0.00673	<0.00336	<0.00874	<0.00336	<0.00135	All Other VOC's = ND	<0.03	
	B-7	0.5	1.87 BJ	<0.00154	<0.00771	<0.00385	<0.0100	<0.00385	<0.00154	2-Butanone (MEK) = 0.123 J	<0.03	
		1.5	1.06 BJ	<0.00127	<0.00637	<0.00319	<0.00829	<0.00319	<0.00127	All Other VOC's = ND	<0.03	
	B-9	0.5	1.76 BJ	<0.00147	<0.00734	<0.00367	<0.00955	<0.00367	<0.00147	2-Butanone (MEK) = 0.123 J	<0.03	
	DUP-B	0.5	1.48 BJ	<0.00136	<0.00680	<0.00340	0.00146 J	<0.00340	<0.00136	2-Butanone (MEK) = 0.141 J 1, 2, 4-Trimethylbenzene = 0.00218 J	<0.03	
	B-9	1.5	1.05 BJ	<0.00111	<0.00557	<0.00278	<0.00724	<0.00278	<0.00111	2-Butanone (MEK) = 0.0806 J	<0.03	
	B-11	0.5	1.88 BJ	<0.00140	<0.00701	<0.00350	<0.00911	<0.00350	<0.00140	2-Butanone (MEK) = 0.111 J	<0.03	
		1.5	1.23 BJ	<0.00142	0.00346 J	<0.00356	<0.00926	<0.00356	<0.00142	2-Butanone (MEK) = 0.103 J	<0.03	
	B-13	0.5	1.13 BJ	<0.00115	<0.00576	<0.00288	<0.00749	<0.00288	<0.00115	2-Butanone (MEK) = 0.0806 J	<0.03	
		1.5	1.11 BJ	<0.00120	<0.00599	<0.00299	<0.00779	<0.00299	<0.00120	2-Butanone (MEK) = 0.0874 J	<0.03	
	B-15	0.5	1.25 BJ	<0.00143	<0.00715	<0.00358	<0.00930	<0.00358	<0.00143	2-Butanone (MEK) = 0.111 J	<0.03	
		1.5	<3.26	<0.00130	<0.00652	<0.00326	<0.00848	<0.00326	<0.00130	All Other VOC's = ND	<0.03	
	B-17	0.5	1.61 BJ	<0.00163	<0.00815	0.00725	0.00358 J	<0.00407	<0.00163	Isopropylbenzene = 0.00204 J n-Propylbenzene = 0.00750 J 1,2,3-Trimethylbenzene = 0.00290 J	<0.03	
		1.5	1.22 BJ	0.00111 J	0.00941	0.00149 J	0.00721 J	<0.00361	<0.00145	Methylene Chloride = 0.0129 J	<0.03	
	B-19	0.5	1.63 J	<0.00110	<0.00551	<0.00276	<0.00717	<0.00276	<0.00110 J4	All Other VOC's = ND	<0.03	
	B-19	1.5	<3.47	<0.00139	<0.00694	<0.00347	<0.00902	<0.00347	<0.00139	2-Butanone (MEK) = 0.115 J	<0.03	
	DUP-D	1.5	<2.92	<0.00117	<0.00585	<0.00292	<0.00760	<0.00292	<0.00117	2-Butanone (MEK) = 0.0930 BJ	<0.03	
DTSC Human Health Risk-Based Screening Levels Residential / Commercial ⁽²⁾			NE	0.33 / 1.4	1,100 / 5,300	5.8 / 25	580 / 2,500	0.59 / 2.7	NE	Styrene = 5,600 / 32,000 2-Butanone (MEK) = 27,000 / 190,000 All Others = Not Established		0.23 / 0.58
Environmental Screening Levels (ESLs) ⁽¹⁾ Residential / Commercial (Construction Worker)			430 / 2,000 / (1,800)	0.33 / 1.4 / (33)	1,100 / 5,300 (4,700)	5.9 / 26 / (540)	580 / 2,500 / (2,400)	0.59 / 2.7 / (33)	0.95 / 6.1 / (18)	1,2-Dichloroethane = 0.47 / 2.1 All Others = Not Established		0.23 / 0.94 / (5.5)
Tier 1 ESL Limit (based on)			100 (O)	0.025 (L)	3.2 (L)	0.43 (L)	2.1 (L)	0.08 (L)	0.085 (L)	Varies		0.23 (CR)

Table 4
Summary of Soil Analytical Results
(Total Petroleum Hydrocarbons, Volatile Organic Compounds, and PCBs)
Former Skypark Airport, Scotts Valley
All soil results are in milligrams per Kilogram (mg/Kg)

Weber Hayes 2021
Before - Cleanup

Sample Information			Laboratory Analytical Results								Polychlorinated Biphenyls (PCBs) by EPA Method 8082	
			Volatile Organic Compounds (VOCs) by EPA Method 8260B									
Investigation Date	Sample ID	Depth (ft)	TPH as GASOLINE (C5-12)	Benzene	Toluene	Ethylbenzene	Xylenes	PCE	TCE	Other VOCs		
Weber-Hayes Environmental Investigation May 17, 2021 to May 20, 2021	B-21	0.5	<2.74	<0.00110	<0.00549	<0.00274	<0.00714	<0.00274	<0.00110	All Other VOC's = ND	<0.03	
		1.5	<2.77	<0.00111	<0.00553	<0.00277	<0.00719	<0.00277	<0.00111	2-Butanone (MEK) = 0.0874 J	<0.03	
	B-23	0.5	<3.14	<0.00126	<0.00628	<0.00314	0.00134 J	<0.00314	<0.00126	2-Butanone (MEK) = 0.0996 J	<0.03	
		1.5	1.97 J	<0.00145	<0.00724	<0.00362	<0.00941	<0.00362	<0.00145 J4	2-Butanone (MEK) = 0.107 J	<0.03	
	B-26	0.5	<3.32	<0.00133	<0.00664	<0.00332	<0.00864	<0.00332	<0.00133	2-Butanone (MEK) = 0.140 1,2-Dichloroethane = 0.00113 J	<0.03	
		1.5	<2.97	<0.00119	<0.00594	<0.00297	<0.00772	<0.00297	<0.00119	2-Butanone (MEK) = 0.105 J 1,2-Dichloroethane = 0.000931 J	<0.03	
	B-27	0.5	3.12 BJ	<0.00139	<0.00693	<0.00347	<0.00901	0.00687	<0.00139	All Other VOC's = ND	<0.03	
		1.5	2.30 BJ	<0.00154	<0.00768	<0.00384	<0.00998	<0.00384	<0.00154	All Other VOC's = ND	<0.03	
	B-30	0.5	3.12 BJ	0.000905 J	0.011	<0.00411	<0.0107	<0.00411	<0.00165	2-Butanone (MEK) = 0.149 J Styrene = 0.000494 J	<0.03	
		1.5	2.14 BJ	<0.00122	<0.00611	<0.00306	<0.00795	<0.00306	<0.00122	All Other VOC's = ND	<0.03	
	B-31	0.5	2.43 BJ	<0.00130	<0.00651	<0.00325	<0.00846	<0.00325	<0.00130	All Other VOC's = ND	<0.03	
	DUP-F	1.5	74.6	<0.00127	0.00629 J	<0.00318	<0.00826	<0.00318	<0.00127 J4	All Other VOC's = ND	<0.03	
	B-31	1.5	1.69 BJ	<0.00123	<0.00617	<0.00309	<0.00803	<0.00309	<0.00123	All Other VOC's = ND	<0.03	
	B-33	0.5	1.92 BJ	<0.00119	0.00197 J	<0.00296	<0.00770	<0.00296	<0.00119	Styrene = 0.000629 J	<0.03	
		1.5	3.24 BJ	<0.00189	<0.00945	<0.00472	<0.0123	<0.00472	<0.00189	2-Butanone (MEK) = 0.161 J Styrene = 0.000710 J	<0.03	
	B-35	0.5	2.52 BJ	<0.00154	<0.00770	<0.00385	<0.0100	<0.00385	<0.00154 J4	All Other VOC's = ND	<0.03	
		1.5	<2.88	<0.00115	<0.00576	<0.00288	<0.00749	<0.00288	<0.00115 J4	All Other VOC's = ND	<0.03	
	B-37	0.5	1.98 BJ	<0.00144	<0.00719	<0.00360	<0.00935	<0.00360	<0.00144 J4	All Other VOC's = ND	<0.03	
		1.5	1.79 BJ	<0.00117	<0.00586	<0.00293	<0.00761	<0.00293	<0.00117 J4	All Other VOC's = ND	<0.03	
	B-40	0.5	2.99 BJ	<0.00129	0.00284 J	<0.00321	0.00141 J	<0.00321	<0.00129 J4	All Other VOC's = ND	<0.03	
		1.5	3.13 BJ	<0.00136	<0.00678	<0.00339	<0.00881	<0.00339	<0.00136 J4	All Other VOC's = ND	<0.03	
DTSC Human Health Risk-Based Screening Levels Residential / Commercial ⁽²⁾			NE	0.33 / 1.4	1,100 / 5,300	5.8 / 25	580 / 2,500	0.59 / 2.7	NE	Styrene = 5,600 / 32,000 2-Butanone (MEK) = 27,000 / 190,000 All Others = Not Established	0.23 / 0.58	
Environmental Screening Levels (ESLs) ⁽¹⁾ Residential / Commercial (Construction Worker)			430 / 2,000 / (1,800)	0.33 / 1.4 / (33)	1,100 / 5,300 (4,700)	5.9 / 26 / (540)	580 / 2,500 / (2,400)	0.59 / 2.7 / (33)	0.95 / 6.1 / (18)	1,2-Dichloroethane = 0.47 / 2.1 All Others = Not Established	0.23 / 0.94 / (5.5)	
Tier 1 ESL Limit (based on)			100 (0)	0.025 (L)	3.2 (L)	0.43 (L)	2.1 (L)	0.08 (L)	0.085 (L)	Varies	0.23 (CR)	

Table 4
Summary of Soil Analytical Results
(Total Petroleum Hydrocarbons, Volatile Organic Compounds, and PCBs)
Former Skypark Airport, Scotts Valley
All soil results are in milligrams per Kilogram (mg/Kg)

Weber Hayes 2021
Before - Cleanup

Sample Information			Laboratory Analytical Results								Polychlorinated Biphenyls (PCBs) by EPA Method 8082	
			Total Petroleum Hydrocarbons EPA Method 8260B/8015M	Volatile Organic Compounds (VOCs) by EPA Method 8260B								
Investigation Date	Sample ID	Depth (ft)	TPH as GASOLINE (C5-12)	Benzene	Toluene	Ethylbenzene	Xylenes	PCE	TCE	Other VOCs		
Weber-Hayes Environmental Investigation May 17, 2021 to May 20, 2021	B-41	0.5	2.86 BJ	<0.00136	<0.00678	<0.00339	<0.00882	<0.00339	<0.00136 J4	All Other VOC's = ND	<0.03	
		1.5	3.48 B	<0.00118	<0.00592	<0.00296	<0.00769	<0.00296	<0.00118 J4	All Other VOC's = ND	<0.03	
	B-44	0.5	2.61 BJ	<0.00112	<0.00562	<0.00281	<0.00731	<0.00281	<0.00112 J4	All Other VOC's = ND	<0.03	
		1.5	2.28 BJ	<0.00138	<0.00691	<0.00345	<0.00898	<0.00345	<0.00138 J4	All Other VOC's = ND	<0.03	
	B-45	0.5	2.71 BJ	<0.00125	<0.00625	<0.00312	<0.00812	<0.00312	<0.00125 J4	All Other VOC's = ND	<0.03	
		1.5	2.73 BJ	<0.00124	<0.00620	<0.00310	<0.00806	<0.00310	<0.00124 J4	All Other VOC's = ND	<0.03	
	B-47	0.5	<4.18	<0.00167	0.00527 J	<0.00418	<0.0109	<0.00418	<0.00167	2-Butanone (MEK) = 0.181	<0.03	
		1.5	<3.83	<0.00153	<0.00764	<0.00383	<0.00993	<0.00383	<0.00153	2-Butanone (MEK) = 0.156	<0.03	
	B-50	0.5	<2.89	<0.00115	<0.00577	<0.00289	<0.00750	<0.00289	<0.00115	2-Butanone (MEK) = 0.104	<0.03	
		1.5	1.25 J	<0.00127	0.00220 J	<0.00318	<0.00826	<0.00318	<0.00127 J4	All Other VOC's = ND	<0.03	
	SB-8	6	1.51 J	<0.00124	<0.00621	<0.00310	<0.00807	<0.00310	<0.00124 J4	All Other VOC's = ND	--	
		9	1.67 J	<0.00134	<0.00672	<0.00336	<0.00873	<0.00336	<0.00134 J4	All Other VOC's = ND	--	
DTSC Human Health Risk-Based Screening Levels Residential / Commercial ⁽²⁾			NE	0.33 / 1.4	1,100 / 5,300	5.8 / 25	580 / 2,500	0.59 / 2.7	NE	Styrene = 5,600 / 32,000 2-Butanone (MEK) = 27,000 / 190,000 All Others = Not Established	0.23 / 0.58	
Environmental Screening Levels (ESLs) ⁽¹⁾ Residential / Commercial (Construction Worker)			430 / 2,000 / (1,800)	0.33 / 1.4 / (33)	1,100 / 5,300 (4,700)	5.9 / 26 / (540)	580 / 2,500 / (2,400)	0.59 / 2.7 / (33)	0.95 / 6.1 / (18)	1,2-Dichloroethane = 0.47 / 2.1 All Others = Not Established	0.23 / 0.94 / (5.5)	
Tier 1 ESL Limit (based on)			100 (O)	0.025 (L)	3.2 (L)	0.43 (L)	2.1 (L)	0.08 (L)	0.085 (L)	Varies	0.23 (CR)	

Notes

1 = Environmental Screening Levels (ESLs): Regional Water Quality Control Board (San Francisco Bay Region) guideline document: *Screening for Environmental Concerns at Sites With Contaminated Soil and Groundwater* (Final version, 2019). The ESLs are intended to provide quantitative risk-based guidance on whether further assessment or remediation of contamination is warranted
https://www.waterboards.ca.gov/sanfranciscobay/water_issues/programs/ESL/new/ESL_Summary_Tables_24Jan19_Rev1.pdf

TIER 1 ESL = The most conservative Environmental Screening Level (ESL) across all potential pathways.

NC = Indicates the lowest ESL is based on the **Non Cancer Hazard**.

CR = Indicates the lowest ESL is based on the **Cancer Risk**.

O = Indicates the lowest ESL is based on the potential for an "odor nuisance" (i.e. 100 mg/kg for gasoline).

L = Indicates the lowest ESL is based on the **potential leaching pathway** (for groundwater protection).

2 = CA DTSC Soil Screening Levels: From the California Department of Toxic Substances Control (DTSC), Office of Human and Ecological Risk (HERO), Human Health Risk Assessment (HHRA) Note Number 3, Table 1, June 2020. If no DTSC screening level is established then the corresponding US EPA RSL is provided.

US EPA Region 9 Soil Regional Screening Levels (RSLs): From [US EPA Regional Screening Levels for Soil](https://semspub.epa.gov/src/document/HQ/199432) (<https://semspub.epa.gov/src/document/HQ/199432>), last updated May 2020 using the Summary Table (based on Carcinogenic Target Risk (TR) =1E-6, Noncancer Hazard Index (HI) =1.0).

RDL = **Reported Detection Limit** = is the laboratory-determined value that is 2 to 5 times above the Method Detection Limit (MDL) that can be reproduced in a manner that results in a 99% confidence level and is both accurate and precise.

J = Laboratory reports that the detection value is between MDL and RDL, and should be considered an estimate.

-- = Not Analyzed

ND = Non Detection

< = A "less than" symbol indicates no detectable concentrations (i.e., the laboratory **did not** detect the contaminant at the concentration shown).

BOLD =	A bolded concentration indicates the laboratory detected the contaminant at the concentration shown.
BOLD =	Analytical result detected at a concentration that is above the Commercial ESL.
BOLD =	Analytical result detected at a concentration that is above the Residential ESL.

Weber Hayes 2021
Before - Cleanup

Table 5
Summary of Soil Analytical Results

Chlorinated Pesticides

Former Skypark Airport, Scotts Valley

All soil results are in milligrams per Kilogram (mg/Kg)

Sample Information			Chlorinated (persistent) Pesticides by EPA 8081A																					
Sample ID	Investigation Sample Date	Depth (ft)	ALDRIN	ALPHA BHC	BETA BHC	DELTA BHC	GAMMA BHC	4,4-DDD	4,4-DDE	4,4-DDT	DIELDRIN	ENDOSULFAN I	ENDOSULFAN II	ENDOSULFAN SULFATE	ENDRIN	ENDRIN ALDEHYDE	ENDRIN KETONE	HEPTACHLOR	HEPTACHLOR EPOXIDE	HEXACHLOROBENZENE	METHOXYCHLOR	CHLORDANE	TOXAPHENE	
B-1	May 17, 2021 to May 20, 2021	0.5	<0.0216	<0.0216	<0.0216	<0.0216	<0.0216	<0.0216	<0.0216	<0.0216	<0.0216	<0.0216	<0.0216	<0.0216	<0.0216	<0.0216	<0.0216	<0.0216	<0.0216	<0.0216	<0.324	<0.432		
		1.5	<0.0257	<0.0257	<0.0257	<0.0257	<0.0257	<0.0257	<0.0257	<0.0257	<0.0257	<0.0257	<0.0257	<0.0257	<0.0257	<0.0257	<0.0257	<0.0257	<0.0257	<0.0257	<0.385	<0.513		
B-3	May 17, 2021 to May 20, 2021	0.5	<0.0214	<0.0214	<0.0214	<0.0214	<0.0214	<0.0214	<0.0214	<0.0214	<0.0214	<0.0214	<0.0214	<0.0214	<0.0214	<0.0214	<0.0214	<0.0214	<0.0214	<0.0214	<0.321	<0.428		
		1.5	<0.0221	<0.0221	<0.0221	<0.0221	<0.0221	<0.0221	<0.0221	<0.0221	<0.0221	<0.0221	<0.0221	<0.0221	<0.0221	<0.0221	<0.0221	<0.0221	<0.0221	<0.0221	<0.332	<0.443		
B-5	May 17, 2021 to May 20, 2021	0.5	<0.0213	<0.0213	<0.0213	<0.0213	<0.0213	<0.0213	<0.0213	<0.0213	<0.0213	<0.0213	<0.0213	<0.0213	<0.0213	<0.0213	<0.0213	<0.0213	<0.0213	<0.0213	<0.320	<0.426		
		1.5	<0.0230	<0.0230	<0.0230	<0.0230	<0.0230	<0.0230	<0.0230	<0.0230	<0.0230	<0.0230	<0.0230	<0.0230	<0.0230	<0.0230	<0.0230	<0.0230	<0.0230	<0.0230	<0.345	<0.460		
B-7	May 17, 2021 to May 20, 2021	0.5	<0.0235	<0.0235	<0.0235	<0.0235	<0.0235	<0.0235	<0.0235	<0.0235	<0.0235	<0.0235	<0.0235	<0.0235	<0.0235	<0.0235	<0.0235	<0.0235	<0.0235	<0.0235	<0.353	<0.471		
		1.5	<0.0224	<0.0224	<0.0224	<0.0224	<0.0224	<0.0224	<0.0224	<0.0224	<0.0224	<0.0224	<0.0224	<0.0224	<0.0224	<0.0224	<0.0224	<0.0224	<0.0224	<0.0224	<0.337	<0.449		
B-9	May 17, 2021 to May 20, 2021	0.5	<0.0214	<0.0214	<0.0214	<0.0214	<0.0214	<0.0214	<0.0214	<0.0214	<0.0214	<0.0214	<0.0214	<0.0214	<0.0214	<0.0214	<0.0214	<0.0214	<0.0214	<0.320	<0.427			
DUP-B		0.5	<0.0209	<0.0209	<0.0209	<0.0209	<0.0209	<0.0209	<0.0209	<0.0209	<0.0209	<0.0209	<0.0209	<0.0209	<0.0209	<0.0209	<0.0209	<0.0209	<0.0209	<0.313	<0.418			
B-9-d1.5	May 17, 2021 to May 20, 2021	0.5	<0.0211	<0.0211	<0.0211	<0.0211	<0.0211	<0.0211	<0.0211	<0.0211	<0.0211	<0.0211	<0.0211	<0.0211	<0.0211	<0.0211	<0.0211	<0.0211	<0.0211	<0.316	<0.421			
B-11		0.5	<0.0238	<0.0238	<0.0238	<0.0238	<0.0238	<0.0238	<0.0238	<0.0238	<0.0238	<0.0238	<0.0238	<0.0238	<0.0238	<0.0238	<0.0238	<0.0238	<0.0238	<0.357	<0.476			
B-13	May 17, 2021 to May 20, 2021	0.5	<0.0238	<0.0238	<0.0238	<0.0238	<0.0238	<0.0238	<0.0238	<0.0238	<0.0238	<0.0238	<0.0238	<0.0238	<0.0238	<0.0238	<0.0238	<0.0238	<0.0238	<0.357	<0.476			
		1.5	<0.0214	<0.0214	<0.0214	<0.0214	<0.0214	<0.0214	<0.0214	<0.0214	<0.0214	<0.0214	<0.0214	<0.0214	<0.0214	<0.0214	<0.0214	<0.0214	0.00454 J	<0.321	<0.429			
B-15	May 17, 2021 to May 20, 2021	0.5	<0.0219	<0.0219	<0.0219	<0.0219	<0.0219	<0.0219	<0.0219	<0.0219	<0.0219	<0.0219	<0.0219	<0.0219	<0.0219	<0.0219	<0.0219	<0.0219	<0.0219	<0.329	<0.438			
		1.5	<0.0226	<0.0226	<0.0226	<0.0226	<0.0226	<0.0226	<0.0226	<0.0226	<0.0226	<0.0226	<0.0226	<0.0226	<0.0226	<0.0226	<0.0226	<0.0226	<0.0226	<0.339	<0.453			
Environmental Screening Levels (ESLs) ⁽¹⁾ Residential / Commercial / Con. Worker			0.035 / 0.15 / 1	NE	NE	NE	0.55 / 2.5 / 16	2.7 / 12 / 81	1.8 / 8.3 / 57	1.9 / 8.5 / 57	0.037 / 0.16 / 1.1	420 / 5,800 / 1,500	420 / 5,800 / 1,500	NE	21 / 290 / 74	NE	NE	0.12 / 0.53 / 3.7	0.062 / 0.28 / 1.9	0.18 / 0.78 / 7.7	350 / 4,800 / 1,200	0.48 / 2.2 / 14	0.51 / 2.2 / 14	
"Tier 1 ESL" (all possible pathways & land uses) Basis = Human Health (HH), Leachability (L), Ecologic (Eco), or Odor (O)			0.035 (HH)	NE	NE	NE	0.0074 (L)	2.7 (HH)	1.8 (HH)	1.9 (HH)	0.00046 (L)	0.0098 (L)	0.0098 (L)	NE	0.0076 (L)	NE	NE	0.12 (HH)	0.00018 (L)	0.0008 (L)	0.013 (L)	0.48 (HH)	0.51 (HH)	
DTSC Note 3 Modified Screening Levels Residential / Commercial ⁽²⁾			0.039 / 0.18	0.086 / 0.36	0.3 / 1.3	NE	0.57 / 2.5	1.9 / 9.6	2 / 9.3	1.9 / 8.5	0.034 / 0.14	470 / 7,000	470 / 7,000	470 / 7,000	19 / 250	19 / 250	19 / 250	0.13 / 0.63	0.07 / 0.33	0.21 / 0.96	320 / 4,100	0.44 / 1.5	0.49 / 2.1	

Weber Hayes 2021
Before - Cleanup

Table 5
Summary of Soil Analytical Results

Chlorinated Pesticides

Former Skypark Airport, Scotts Valley

All soil results are in milligrams per Kilogram (mg/Kg)

Sample Information			Chlorinated (persistent) Pesticides by EPA 8081A																				
Sample ID	Investigation Sample Date	Depth (ft)	ALDRIN	ALPHA BHC	BETA BHC	DELTA BHC	GAMMA BHC	4,4-DDD	4,4-DDE	4,4-DDT	DIELDRIN	ENDOSULFAN I	ENDOSULFAN II	ENDOSULFAN SULFATE	ENDRIN	ENDRIN ALDEHYDE	ENDRIN KETONE	HEPTACHLOR	HEPTACHLOR EPOXIDE	HEXAChlorOBENZENE	METHOXYCHLOR	CHLORDANE	TOXAPHENE
B-17	May 17, 2021 to May 20, 2021	0.5	<0.0263	<0.0263	<0.0263	<0.0263	<0.0263	<0.0263	<0.0263	<0.0263	<0.0263	<0.0263	<0.0263	<0.0263	<0.0263	<0.0263	<0.0263	<0.0263	<0.0263	<0.0263	<0.0263	<0.395	<0.526
		1.5	<0.0242	<0.0242	<0.0242	<0.0242	<0.0242	<0.0242	<0.0242	<0.0242	<0.0242	<0.0242	<0.0242	<0.0242	<0.0242	<0.0242	<0.0242	<0.0242	<0.0242	<0.0242	<0.0242	<0.363	<0.483
B-19		0.5	<0.0209	<0.0209	<0.0209	<0.0209	<0.0209	<0.0209	<0.0209	<0.0209	<0.0209	<0.0209	<0.0209	<0.0209	<0.0209	<0.0209	<0.0209	<0.0209	<0.0209	<0.0209	<0.0209	<0.313	<0.418
DUP-D		1.5	<0.0239	<0.0239	<0.0239	<0.0239	<0.0239	<0.0239	<0.0239	<0.0239	<0.0239	<0.0239	<0.0239	<0.0239	<0.0239	<0.0239	<0.0239	<0.0239	<0.0239	<0.0239	<0.0239	<0.358	<0.477
B-19-d1.5		1.5	<0.0217	<0.0217	<0.0217	<0.0217	<0.0217	<0.0217	<0.0217	<0.0217	<0.0217	<0.0217	<0.0217	<0.0217	<0.0217	<0.0217	<0.0217	<0.0217	<0.0217	<0.0217	<0.0217	<0.325	<0.434
B-21	May 17, 2021 to May 20, 2021	0.5	<0.0210	<0.0210	<0.0210	<0.0210	<0.0210	<0.0210	<0.0210	<0.0210	<0.0210	<0.0210	<0.0210	<0.0210	<0.0210	<0.0210	<0.0210	<0.0210	<0.0210	<0.0210	<0.0210	<0.314	0.471
		1.5	<0.0211	<0.0211	<0.0211	<0.0211	<0.0211	<0.0211	<0.0211	<0.0211	<0.0211	<0.0211	<0.0211	<0.0211	<0.0211	<0.0211	<0.0211	<0.0211	<0.0211	<0.0211	<0.0211	<0.316	<0.421
B-23	May 17, 2021 to May 20, 2021	1.5	<0.0225	<0.0225	<0.0225	<0.0225	<0.0225	<0.0225	<0.0225	<0.0225	<0.0225	<0.0225	<0.0225	<0.0225	<0.0225	<0.0225	<0.0225	<0.0225	<0.0225	<0.0225	<0.0225	<0.337	<0.449
		0.5	<0.0243	<0.0243	<0.0243	<0.0243	<0.0243	<0.0243	<0.0243	<0.0243	<0.0243	<0.0243	<0.0243	<0.0243	<0.0243	<0.0243	<0.0243	<0.0243	<0.0243	<0.0243	<0.0243	<0.364	<0.486
B-26	May 17, 2021 to May 20, 2021	0.5	<0.0222	<0.0222	<0.0222	<0.0222	<0.0222	<0.0222	<0.0222	<0.0222	<0.0222	<0.0222	<0.0222	<0.0222	<0.0222	<0.0222	<0.0222	<0.0222	<0.0222	<0.0222	<0.0222	<0.333	<0.444
		1.5	<0.0219	<0.0219	<0.0219	<0.0219	<0.0219	<0.0219	<0.0219	<0.0219	<0.0219	<0.0219	<0.0219	<0.0219	<0.0219	<0.0219	<0.0219	<0.0219	<0.0219	<0.0219	<0.0219	<0.328	<0.437
B-27	May 17, 2021 to May 20, 2021	1.5	<0.0207	<0.0207	<0.0207	<0.0207	<0.0207	<0.0207	<0.0207	<0.0207	<0.0207	<0.0207	<0.0207	<0.0207	<0.0207	<0.0207	<0.0207	<0.0207	<0.0207	<0.0207	<0.311	<0.415	
		0.5	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	<0.376	<0.501	
B-30	May 17, 2021 to May 20, 2021	0.5	<0.0217	<0.0217	<0.0217	<0.0217	<0.0217	<0.0217	<0.0217	<0.0217	<0.0217	<0.0217	<0.0217	<0.0217	<0.0217	<0.0217	<0.0217	<0.0217	<0.0217	<0.0217	<0.325	<0.434	
		1.5	<0.0221	<0.0221	<0.0221	<0.0221	<0.0221	<0.0221	<0.0221	<0.0221	<0.0221	<0.0221	<0.0221	<0.0221	<0.0221	<0.0221	<0.0221	<0.0221	<0.0221	<0.0221	<0.332	<0.442	
B-31	May 17, 2021 to May 20, 2021	0.5	<0.0217	<0.0217	<0.0217	<0.0217	<0.0217	<0.0217	<0.0217	<0.0217	<0.0217	<0.0217	<0.0217	<0.0217	<0.0217	<0.0217	<0.0217	<0.0217	<0.0217	<0.0217	<0.326	<0.434	
		1.5	<0.0221	<0.0221	<0.0221	<0.0221	<0.0221	<0.0221	<0.0221	<0.0221	<0.0221	<0.0221	<0.0221	<0.0221	<0.0221	<0.0221	<0.0221	<0.0221	<0.0221	<0.0221	<0.332	<0.442	
DUP-F		1.5	<0.0223	<0.0223	<0.0223	<0.0223	<0.0223	<0.0223	<0.0223	<0.0223	<0.0223	<0.0223	<0.0223	<0.0223	<0.0223	<0.0223	<0.0223	<0.0223	<0.0223	<0.0223	<0.334	<0.445	
Environmental Screening Levels (ESLs)⁽¹⁾ Residential / Commercial / Con. Worker			0.035 / 0.15 / 1	NE	NE	NE	0.55 / 2.5 / 16	2.7 / 12 / 81	1.8 / 8.3 / 57	1.9 / 8.5 / 57	0.037 / 0.16 / 1.1	420 / 5,800 / 1,500	420 / 5,800 / 1,500	NE	21 / 290 / 74	NE	NE	0.12 / 0.53 / 3.7	0.062 / 0.28 / 1.9	0.18 / 0.78 / 7.7	350 / 4,800 / 1,200	0.48 / 2.2 / 14	0.51 / 2.2 / 14
"Tier 1 ESL" (all possible pathways & land uses) Basis = Human Health (HH), Leachability (L), Ecologic (Eco), or Odor (O)			0.035 (HH)	NE	NE	NE	0.0074 (L)	2.7 (HH)	1.8 (HH)	1.9 (HH)	0.00046 (L)	0.0098 (L)	0.0098 (L)	NE	0.0076 (L)	NE	NE	0.12 (HH)	0.00018 (L)	0.0008 (L)	0.013 (L)	0.48 (HH)	0.51 (HH)
DTSC Note 3 Modified Screening Levels Residential / Commercial ⁽²⁾			0.039 / 0.18	<																			

Table 5
Summary of Soil Analytical ResultsChlorinated Pesticides
Former Skypark Airport, Scotts Valley

All soil results are in milligrams per Kilogram (mg/Kg)

Sample Information			Chlorinated (persistent) Pesticides by EPA 8081A																					
Sample ID	Investigation Sample Date	Depth (ft)	ALDRIN	ALPHA BHC	BETA BHC	DELTA BHC	GAMMA BHC	4,4-DDD	4,4-DDE	4,4-DDT	DIELDRIN	ENDOSULFAN I	ENDOSULFAN II	ENDOSULFAN SULFATE	ENDRIN	ENDRIN ALDEHYDE	ENDRIN KETONE	HEPTACHLOR	HEPTACHLOR EPOXIDE	HEXACHLOROBENZENE	METHOXYCHLOR	CHLORDANE	TOXAPHENE	
B-33	Weber-Hayes May 17, 2021 to May 20, 2021	0.5	<0.0217	<0.0217	<0.0217	<0.0217	<0.0217	<0.0217	<0.0217	<0.0217	<0.0217	<0.0217	<0.0217	<0.0217	<0.0217	<0.0217	<0.0217	<0.0217	<0.0217	<0.0217	<0.325	<0.434		
		1.5	<0.0286	<0.0286	<0.0286	<0.0286	<0.0286	<0.0286	<0.0286	<0.0286	<0.0286	<0.0286	<0.0286	<0.0286	<0.0286	<0.0286	<0.0286	<0.0286	<0.0286	<0.0286	<0.429	<0.573		
B-35		0.5	<0.0252	<0.0252	<0.0252	<0.0252	<0.0252	<0.0252	<0.0252	<0.0252	<0.0252	<0.0252	<0.0252	<0.0252	<0.0252	<0.0252	<0.0252	<0.0252	<0.0252	<0.0252	<0.0252	<0.377	<0.503	
		1.5	<0.0214	<0.0214	<0.0214	<0.0214	<0.0214	<0.0214	<0.0214	<0.0214	<0.0214	<0.0214	<0.0214	<0.0214	<0.0214	<0.0214	<0.0214	<0.0214	<0.0214	<0.0214	<0.320	<0.427		
B-37		0.5	<0.0241	<0.0241	<0.0241	<0.0241	<0.0241	<0.0241	<0.0241	<0.0241	<0.0241	<0.0241	<0.0241	<0.0241	<0.0241	<0.0241	<0.0241	<0.0241	<0.0241	<0.0241	<0.361	<0.482		
		1.5	<0.0215	<0.0215	<0.0215	<0.0215	<0.0215	<0.0215	<0.0215	<0.0215	<0.0215	<0.0215	<0.0215	<0.0215	<0.0215	<0.0215	<0.0215	<0.0215	<0.0215	<0.0215	<0.323	<0.431		
B-40		0.5	<0.0228	<0.0228	<0.0228	<0.0228	<0.0228	<0.0228	<0.0228	<0.0228	<0.0228	<0.0228	<0.0228	<0.0228	<0.0228	<0.0228	<0.0228	<0.0228	<0.0228	<0.0228	<0.342	<0.456		
		1.5	<0.0235	<0.0235	<0.0235	<0.0235	<0.0235	<0.0235	<0.0235	<0.0235	<0.0235	<0.0235	<0.0235	<0.0235	<0.0235	<0.0235	<0.0235	<0.0235	<0.0235	<0.0235	<0.353	<0.471		
B-41		0.5	<0.0231	<0.0231	<0.0231	<0.0231	<0.0231	<0.0231	<0.0231	<0.0231	<0.0231	<0.0231	<0.0231	<0.0231	<0.0231	<0.0231	<0.0231	<0.0231	<0.0231	<0.0231	<0.347	<0.462		
		1.5	<0.0218	<0.0218	<0.0218	<0.0218	<0.0218	<0.0218	<0.0218	<0.0218	<0.0218	<0.0218	<0.0218	<0.0218	<0.0218	<0.0218	<0.0218	<0.0218	<0.0218	<0.0218	<0.327	<0.436		
B-44		0.5	<0.0212	<0.0212	<0.0212	<0.0212	<0.0212	<0.0212	<0.0212	<0.0212	<0.0212	<0.0212	<0.0212	<0.0212	<0.0212	<0.0212	<0.0212	<0.0212	<0.0212	<0.0212	<0.319	<0.425		
		1.5	<0.0235	<0.0235	<0.0235	<0.0235	<0.0235	<0.0235	<0.0235	<0.0235	<0.0235	<0.0235	<0.0235	<0.0235	<0.0235	<0.0235	<0.0235	<0.0235	<0.0235	<0.0235	<0.352	<0.470		
B-45		0.5	<0.0221	<0.0221	<0.0221	<0.0221	<0.0221	<0.0221	<0.0221	<0.0221	<0.0221	<0.0221	<0.0221	<0.0221	<0.0221	<0.0221	<0.0221	<0.0221	<0.0221	<0.0221	<0.331	<0.441		
		1.5	<0.0223	<0.0223	<0.0223	<0.0223	<0.0223	<0.0223	<0.0223	<0.0223	<0.0223	<0.0223	<0.0223	<0.0223	<0.0223	<0.0223	<0.0223	<0.0223	<0.0223	<0.0223	<0.334	<0.446		
B-47		0.5	<0.0210	<0.0210	<0.0210	<0.0210	<0.0210	<0.0210	<0.0210	<0.0210	<0.0210	<0.0210	<0.0210	<0.0210	<0.0210	<0.0210	<0.0210	<0.0210	<0.0210	<0.0210	<0.316	<0.421		
		1.5	<0.0252	<0.0252	<0.0252	<0.0252	<0.0252	<0.0252	<0.0252	<0.0252	<0.0252	<0.0252	<0.0252	<0.0252	<0.0252	<0.0252	<0.0252	<0.0252	<0.0252	<0.0252	<0.377	<0.503		
B-50		0.5	<0.0215	<0.0215	<0.0215	<0.0215	<0.0215	<0.0215	<0.0215	<0.0215	<0.0215	<0.0215	<0.0215	<0.0215	<0.0215	<0.0215	<0.0215	<0.0215	<0.0215	<0.0215	<0.322	<0.430		
		1.5	<0.0220	<0.0220	<0.0220	<0.0220	<0.0220	<0.0220	<0.0220	<0.0220	<0.0220	<0.0220	<0.0220	<0.0220	<0.0220	<0.0220	<0.0220	<0.0220	<0.0220	<0.0220	<0.330	<0.440		
Environmental Screening Levels (ESLs) ⁽¹⁾ Residential / Commercial / Con. Worker			0.035 / 0.15 / 1	NE	NE	NE	0.55 / 2.5 / 16	2.7 / 12 / 81	1.8 / 8.3 / 57	1.9 / 8.5 / 57	0.037 / 0.16 / 1.1	420 / 5,800 / 1,500	420 / 5,800 / 1,500	NE	21 / 290 / 74	NE	NE	0.12 / 0.53 / 3.7	0.062 / 0.28 / 1.9	0.18 / 0.78 / 7.7	350 / 4,800 / 1,200	0.48 / 2.2 / 14	0.51 / 2.2 / 14	
"Tier 1 ESL" (all possible pathways & land uses) Basis = Human Health (HH), Leachability (L), Ecologic (Eco), or Odor (O)			0.035 (HH)	NE	NE	NE	0.0074 (L)	2.7 (HH)	1.8 (HH)	1.9 (HH)	0.00046 (L)	0.0098 (L)	0.0098 (L)	NE	0.0076 (L)	NE	NE	0.12 (HH)	0.00018 (L)	0.0008 (L)	0.013 (L)	0.48 (HH)	0.51 (HH)	
DTSC Note 3 Modified Screening Levels Residential / Commercial ⁽²⁾			0.039 / 0.18	0.086 / 0.36	0.3 / 1.3	NE	0.57 / 2.5	1.9 / 9.6	2 / 9.3	1.9 / 8.5	0.034 / 0.14	470 / 7,000	470 / 7,000	470 / 7,000	19 / 250	19 / 250	19 / 250	0.13 / 0.63	0.07 / 0.33	0.21 / 0.96	320 / 4,100	0.44 / 1.5	0.49 / 2.1	

Notes

Table 5
Summary of Soil Analytical Results

Chlorinated Pesticides
Former Skypark Airport, Scotts Valley

All soil results are in milligrams per Kilogram (mg/Kg)

Sample Information			Chlorinated (persistent) Pesticides by EPA 8081A																				
<i>Sample ID</i>	<i>Investigation Sample Date</i>	<i>Depth (ft)</i>	ALDRIN	ALPHA BHC	BETA BHC	DELTA BHC	GAMMA BHC	4,4-DDD	4,4-DDE	4,4-DDT	DIELDRIN	ENDOSULFAN I	ENDOSULFAN II	ENDOSULFAN SULFATE	ENDRIN	ENDRIN ALDEHYDE	ENDRIN KETONE	HEPTACHLOR	HEPTACHLOR EPOXIDE	HEXACHLOROBENZENE	METHOXYCHLOR	CHLORDANE	TOXAPHENE

1 = Environmental Screening Levels (ESLs): Regional Water Quality Control Board (San Francisco Bay Region) guideline document: *Screening for Environmental Concerns at Sites With Contaminated Soil and Groundwater* (Final version, 2019). The ESLs are intended to provide quantitative risk-based guidance on whether further assessment or remediation of contamination is warranted <https://www.waterboards.ca.gov/sanfranciscobay/water_issues/programs/ESL/new/ESL_Summary_Tables_24Jan19_Rev1.pdf>

TIER 1 ESL = The most conservative Environmental Screening Level (ESL) across all potential pathways.

HH = Indicates the lowest ESL is based on the **Cancer Risk**.

L = Indicates the lowest ESL is based on the **potential leaching pathway** (for groundwater protection).

2 = CA DTSC Soil Screening Levels: From the California Department of Toxic Substances Control (DTSC), Office of Human and Ecological Risk (HERO), Human Health Risk Assessment (HHRA) Note Number 3, Table 1, May 2020. **If no DTSC screening level is established then the corresponding US EPA RSL is provided.**

US EPA Region 9 Soil Regional Screening Levels (RSLs): From [US EPA Regional Screening Levels for Soil](https://semspub.epa.gov/work/HQ/197414.pdf) (<https://semspub.epa.gov/work/HQ/197414.pdf>), last updated May 2021 using the Summary Table [based on Carcinogenic Target Risk (TR) =1E-6, Noncancer Hazard Index (HI) =1.0].

NE = Threshold Not Established

J = A "J-flag" indicates the laboratory detected the compound, but at a concentration below the laboratory's reporting limit (RDL), but above its method (minimum) detection limit (MDL). Considered an estimate.

RDL = Laboratory Reported Detection Limit

< = A "less than" symbol indicates no detectable concentrations (i.e., the laboratory **did not** detect the contaminant at the concentration shown).

BOLD = A laboratory result was detected (i.e., detected above the Laboratory's Reported Detection Limit (RDL).

BOLD = Analytical result detected at a concentration that is above the Commercial ESL.

BOLD = Analytical result detected at a concentration that is above the Residential ESL.

BOLD = Analytical result detected at a concentration that is above the most conservative Tier 1 threshold.

Weber Hayes 2021
Before - Cleanup

Table 6: Summary of Soil Analytical Results
Polycyclic Aromatic Hydrocarbons (PAHs)
Former Skypark Airport, Scotts Valley
All soil results are in milligrams per Kilogram (mg/Kg)

Sample Information			Polycyclic Aromatic Hydrocarbons (PAHs) by EPA Method 8270 Sim																			
Investigation Date	Sample ID	Depth (ft)	ANTHACENE	ACENAPHTHENE	ACENAPHTHYLENE	BENZO(A)ANTHRACENE	BENZO(A)PYRENE	BENZO(B)FLUORANTHENE	BENZO(G,H,J)PERYLENE	BENZO(K)FLUORANTHENE	CHRYSENE	DIBENZ(A,H)ANTHRACENE	FLUORANTHENE	FLUORENE	INDENO(1,2,3-CD)PYRENE	NAPHTHALENE	PHENANTHRENE	PYRENE	1-METHYNAPHTHALENE	2-METHYNAPHTHALENE	2-CHLORONAPHTHALENE	
Weber-Hayes May 17, 2021 to May 20, 2021	B-1	0.5	<0.00648	<0.00648	<0.00648	<0.00648	<0.00648	<0.00648	<0.00648	<0.00648	<0.00648	<0.00648	<0.00648	<0.00648	<0.0216	<0.00648	<0.00648	<0.0216	<0.0216	<0.0216		
		1.5	<0.00770	<0.00770	<0.00770	<0.00770	<0.00770	<0.00770	<0.00770	<0.00770	<0.00770	<0.00770	<0.00770	<0.00770	<0.0257	<0.00770	<0.0257	<0.0257	<0.0257	<0.0257		
	B-3	0.5	<0.00642	<0.00642	<0.00642	<0.00642	<0.00642	0.00283 J	0.00479 J	<0.00642	<0.00642	<0.00642	<0.00642	<0.00642	<0.00642	<0.0214	<0.00642	0.00256 J	<0.0214	<0.0214	<0.0214	
		1.5	<0.00664	<0.00664	<0.00664	<0.00664	<0.00664	<0.00664	<0.00664	<0.00664	<0.00664	<0.00664	<0.00664	<0.00664	<0.0221	<0.00664	<0.0221	<0.0221	<0.0221	<0.0221		
	B-5	0.5	<0.00639	<0.00639	<0.00639	<0.00639	<0.00639	<0.00639	<0.00639	<0.00639	<0.00639	<0.00639	<0.00639	<0.00639	<0.0213	<0.00639	<0.0213	<0.0213	<0.0213	<0.0213		
		1.5	<0.00690	<0.00690	<0.00690	<0.00690	<0.00690	<0.00690	<0.00690	<0.00690	<0.00690	<0.00690	<0.00690	<0.00690	<0.0230	<0.00690	<0.0230	<0.0230	<0.0230	<0.0230		
	B-7	0.5	<0.00706	<0.00706	<0.00706	<0.00706	<0.00706	<0.00706	<0.00706	<0.00706	<0.00706	<0.00706	<0.00706	<0.00706	<0.0235	<0.00706	<0.0235	<0.0235	<0.0235	<0.0235		
		1.5	<0.00673	<0.00673	<0.00673	<0.00673	<0.00673	<0.00673	<0.00673	<0.00673	<0.00673	<0.00673	<0.00673	<0.00673	<0.0224	<0.00673	<0.0224	<0.0224	<0.0224	<0.0224		
	B-9	0.5	<0.00641	<0.00641	<0.00641	<0.00641	<0.00641	<0.00641	<0.00641	<0.00641	<0.00641	<0.00641	<0.00641	<0.00641	<0.0214	<0.00641	<0.0214	<0.0214	<0.0214	<0.0214		
	DUP-B	0.5	<0.00627	<0.00627	<0.00627	0.00184 J	<0.00627	0.00478 J	0.00415 J	<0.00627	0.00612 J	<0.00627	<0.00627	<0.00627	<0.0209	<0.00627	0.00300 J	<0.0209	0.00545 J	<0.0209	0.00545 J	<0.0209
	B-9	1.5	<0.00632	<0.00632	<0.00632	<0.00632	<0.00632	<0.00632	<0.00632	<0.00632	<0.00632	<0.00632	<0.00632	<0.00632	<0.0211	<0.00632	<0.0211	<0.0211	<0.0211	<0.0211	<0.0211	
	B-11	0.5	<0.00713	<0.00713	<0.00713	<0.00713	<0.00713	<0.00713	<0.00713	<0.00713	<0.00713	<0.00713	<0.00713	<0.00713	<0.0238	<0.00713	<0.0238	<0.0238	<0.0238	<0.0238	<0.0238	
		1.5	<0.00714	<0.00714	<0.00714	<0.00714	<0.00714	<0.00714	<0.00714	<0.00714	<0.00714	<0.00714	<0.00714	<0.00714	<0.0238	<0.00714	<0.0238	<0.0238	<0.0238	<0.0238	<0.0238	
	B-13	0.5	<0.00643	<0.00643	<0.00643	<0.00643	<0.00643	<0.00643	<0.00643	<0.00643	<0.00643	<0.00643	<0.00643	<0.00643	<0.0214	<0.00643	<0.00643	<0.0214	<0.0214	<0.0214	<0.0214	
		1.5	<0.00657	<0.00657	<0.00657	<0.00657	<0.00657	<0.00657	<0.00657	<0.00657	<0.00657	<0.00657	<0.00657	<0.00657	<0.0219	<0.00657	<0.0219	<0.0219	<0.0219	<0.0219	<0.0219	
	B-15	0.5	<0.00728	<0.00728	<0.00728	<0.00728	<0.00728	<0.00728	<0.00728	<0.00728	<0.00728	<0.00728	<0.00728	<0.00728	<0.0243	<0.00728	<0.0243	<0.0243	<0.0243	<0.0243	<0.0243	
		1.5	<0.00679	<0.00679	<0.00679	<0.00679	<0.00679	<0.00679	<0.00679	<0.00679	<0.00679	<0.00679	<0.00679	<0.00679	<0.0226	<0.00679	<0.0226	<0.0226	<0.0226	<0.0226	<0.0226	
	B-17	0.5	<0.00789	<0.00789	<0.00789	<0.00789	<0.00789	<0.00789	<0.00789	<0.00789	<0.00789	<0.00789	<0.00789	<0.00789	<0.0263	<0.00789	<0.0263	<0.0263	<0.0263	<0.0263	<0.0263	
		1.5	<0.00725	<0.00725	<0.00725	<0.00725	<0.00725	<0.00725	<0.00725	<0.00725	<0.00725	<0.00725	<0.00725	<0.00725	<0.0242	<0.00725	<0.0242	<0.0242	<0.0242	<0.0242	<0.0242	
	B-19	0.5	<0.00629	<0.00629	<0.00629	0.00206 J	0.00256 J	0.00454 J	0.00338 J	<0.00629	0.00631	0.00182 J	<0.00629	<0.00629	<0.0210	<0.00629	0.00275 J	<0.0210	<0.0210	<0.0210	<0.0210	<0.0210
		1.5	<0.00716	<0.00716	<0.00716	<0.00716	<0.00716	<0.00716	<0.00716	<0.00716	<0.00716	<0.00716	<0.00716	<0.00716	<0.0239	<0.00716	<0.0239	<0.0239	<0.0239	<0.0239	<0.0239	
	DUP-D	1.5	<0.00651	<0.00651	<0.00651	<0.00651	<0.00651	<0.00651	<0.00651	<0.00651	<0.00651	<0.00651	<0.00651	<0.00651	<0.0217	<0.00651	<0.0217	<0.0217	<0.0217	<0.0217	<0.0217	
	B-21	0.5	<0.00629	<0.00629	<0.00629																	

Weber Hayes 2021
Before - Cleanup

Table 6: Summary of Soil Analytical Results
Polycyclic Aromatic Hydrocarbons (PAHs)
Former Skypark Airport, Scotts Valley
All soil results are in milligrams per Kilogram (mg/Kg)

Sample Information			Polycyclic Aromatic Hydrocarbons (PAHs) by EPA Method 8270 Sim																			
Investigation Date	Sample ID	Depth (ft)	ANTHACENE	ACENAPHTHENE	ACENAPHTHYLENE	BENZO(A)ANTHRACENE	BENZO(A)PYRENE	BENZO(B)FLUORANTHENE	BENZO(G,H,J)PERYLENE	BENZO(K)FLUORANTHENE	CHRYSENE	DIBENZ(A,H)ANTHRACENE	FLUORANTHENE	FLUORENE	INDENO(1,2,3-CD)PYRENE	NAPHTHALENE	PHENANTHRENE	PYRENE	1-METHYLNAPHTHALENE	2-METHYLNAPHTHALENE	2-CHLORONAPHTHALENE	
Weber-Hayes May 17, 2021 to May 20, 2021	B-27	0.5	<0.00622	<0.00622	<0.00622	0.0142	0.0169	0.021	0.0165	0.00627	0.0135	0.00381 J	0.0273	<0.00622	0.014	<0.0207	0.00669	0.0261	<0.0207	<0.0207	<0.0207	
		1.5	<0.00751	<0.00751	<0.00751	<0.00751	<0.00751	<0.00751	<0.00751	<0.00751	<0.00751	<0.00751	<0.00751	<0.00751	<0.00751	<0.0250	<0.00751	<0.0250	<0.0250	<0.0250		
	B-30	0.5	<0.0325	<0.0325	<0.0325	<0.0325	<0.0325	<0.0325	0.042	<0.0325	0.0163 J	<0.0325	<0.0325	<0.0325	<0.0325	<0.108	<0.0325	0.0183 J	<0.108	<0.108	<0.108	
		1.5	<0.00663	<0.00663	<0.00663	<0.00663	0.00404 J	<0.00663	0.00685	<0.00663	<0.00663	0.00263 J	<0.00663	0.00264 J	<0.0221	<0.00663	0.00452 J	<0.0221	<0.0221	<0.0221	<0.0221	
	B-31	0.5	<0.00651	<0.00651	<0.00651	<0.00651	0.00381 J	<0.00651	0.00493 J	<0.00651	<0.00651	<0.00651	<0.00651	<0.00651	<0.00651	<0.0217	<0.00651	0.00263 J	<0.0217	<0.0217	<0.0217	
		1.5	<0.00664	<0.00664	<0.00664	<0.00664	<0.00664	<0.00664	0.00264 J	<0.00664	<0.00664	<0.00664	<0.00664	<0.00664	<0.00664	<0.0221	<0.00664	<0.0221	<0.0221	<0.0221	<0.0221	
	DUP-F	1.5	<0.00668	<0.00668	<0.00668	<0.00668	<0.00668	<0.00668	<0.00668	<0.00668	<0.00668	<0.00668	<0.00668	<0.00668	<0.00668	<0.0223	<0.00668	<0.0223	<0.0223	<0.0223	<0.0223	
	B-33	0.5	<0.00651	<0.00651	<0.00651	<0.00651	<0.00651	<0.00651	<0.00651	<0.00651	<0.00651	<0.00651	<0.00651	<0.00651	<0.00651	<0.00651	0.00520 J	<0.00651	0.00307 J	<0.0217	<0.0217	<0.0217
		1.5	<0.00859	<0.00859	<0.00859	<0.00859	<0.00859	<0.00859	<0.00859	<0.00859	<0.00859	<0.00859	<0.00859	<0.00859	<0.00859	<0.00859	<0.0286	<0.00859	<0.0286	<0.0286	<0.0286	<0.0286
	B-35	0.5	<0.00755	<0.00755	<0.00755	<0.00755	<0.00755	<0.00755	<0.00755	<0.00755	<0.00755	<0.00755	<0.00755	<0.00755	<0.00755	<0.0252	<0.00755	<0.0252	<0.0252	<0.0252	<0.0252	
		1.5	<0.00641	<0.00641	<0.00641	<0.00641	<0.00641	<0.00641	<0.00641	<0.00641	<0.00641	<0.00641	<0.00641	<0.00641	<0.00641	<0.0214	<0.00641	<0.0214	<0.0214	<0.0214	<0.0214	
	B-37	0.5	<0.00723	<0.00723	<0.00723	<0.00723	<0.00723	<0.00723	<0.00723	<0.00723	<0.00723	<0.00723	<0.00723	<0.00723	<0.00723	<0.0241	<0.00723	<0.0241	<0.0241	<0.0241	<0.0241	
		1.5	<0.00646	<0.00646	<0.00646	<0.00646	<0.00646	<0.00646	<0.00646	<0.00646	<0.00646	<0.00646	<0.00646	<0.00646	<0.00646	<0.0215	<0.00646	<0.0215	<0.0215	<0.0215	<0.0215	
	B-40	0.5	<0.00684	<0.00684	<0.00684	0.0139	0.0172	0.018	0.0158	0.00611 J	0.0147	0.00389 J	0.0252	<0.00684	0.0122	<0.0228	0.00743	0.0244	<0.0228	<0.0228	<0.0228	
		1.5	<0.00706	<0.00706	<0.00706	<0.00706	<0.00706	<0.00706	0.00752	<0.00706	0.00441 J	<0.00706	<0.00706	<0.00706	<0.00706	<0.0235	<0.00706	0.00255 J	<0.0235	<0.0235	<0.0235	
	B-41	0.5	<0.00693	<0.00693	<0.00693	<0.00693	<0.00693	0.00192 J	0.00470 J	<0.00693	<0.00693	<0.00693	<0.00693	<0.00693	<0.00693	<0.0231	<0.00693	<0.0231	<0.0231	<0.0231	<0.0231	
		1.5	<0.00654	<0.00654	<0.00654	<0.00654	<0.00654	0.00187 J	0.00255 J	<0.00654	<0.00654	<0.00654	<0.00654	<0.00654	<0.00654	<0.0218	<0.00654	<0.0218	<0.0218	<0.0218	<0.0218	
	B-44	0.5	<0.00637	<0.00637	<0.00637	<0.00637	0.00374 J	0.00373 J	0.00682	<0.00637	<0.00637	<0.00637	<0.00637	<0.00637	<0.00637	<0.0212	<0.00637	0.00361 J	<0.0212	<0.0212	<0.0212	
		1.5	<0.00705	<0.00705	<0.00705	<0.00705	<0.00705	0.00370 J	<0.00705	<0.00705	<0.00705	<0.00705	<0.00705	<0.00705	<0.00705	<0.0235	<0.00705	<0.0235	<0.0235	<0.0235	<0.0235	
	B-45	0.5	<0.00662	<0.00662	<0.00662	0.00439 J	<0.00662	<0.00662	<0.00662	<0.00662	<0.0131	<0.00662	0.00395 J	<0.00662	<0.00662	0.00550 J	0.00267 J	0.0127	<0.0221	<0.0221	<0.0221	
		1.5	<0.00669	<0.00669	<0.00669	<0.00669	<0.00669	0.00363 J	<0.00669	<0.00669	<0.00669	<0.00669	<0.00669	<0.00669	<0.00669	<0.0223	<0.00669	<0.0223	<0.0223	<0.0223	<0.0223	
	B-47	0.5	<0.00631	<0.00631	<0.00631 J3	<0.00631	<0.00631	<0.00631	<0.00631	<0.00631	<0.00631	<0.00631	<0.00631	<0.00631	<0.00631	<0.0210	<0.00631	<0.0210	<0.0210	<0.0210	<0.0210 J3	
		1.5	<0.00755	<0.																		

Table 6: Summary of Soil Analytical Results
Polycyclic Aromatic Hydrocarbons (PAHs)
Former Skypark Airport, Scotts Valley
All soil results are in milligrams per Kilogram (mg/Kg)

Sample Information			Polycyclic Aromatic Hydrocarbons (PAHs) by EPA Method 8270 Sim																		
Investigation Date	Sample ID	Depth (ft)	ANTHRACENE	ACENAPHTHENE	ACENAPHTHYLENE	BENZO(A)ANTHRACENE	BENZO(A)PYRENE	BENZO(B)FLUORANTHENE	BENZO(G,H)PYRENE	BENZO(K)FLUORANTHENE	CHRYSENE	DIBENZ(A,H)ANTHRACENE	FLUORANTHENE	FLUORENE	INDENO(1,2,3-CD)PYRENE	NAPHTHALENE	PHENANTHRENE	PYRENE	1-METHYLNAPHTHALENE	2-METHYLNAPHTHALENE	2-CHLORONAPHTHALENE

Notes:

BOLD =	A laboratory result was detected (i.e., detected above the <i>Reported Detection Limit</i> (RDL)).
BOLD =	Lab result was detected above the ESL or DTSC Residential Land Use Threshold .
BOLD =	Lab result was detected above the ESL or DTSC Commercial Land Use or Construction Worker Threshold .

1 = Environmental Screening Levels (ESLs): Regional Water Quality Control Board (San Francisco Bay Region) guideline document: *Screening for Environmental Concerns at Sites With Contaminated Soil and Groundwater* (Final version, 2019). The ESLs are intended to provide quantitative risk-based guidance on whether further assessment or remediation of contamination is warranted <https://www.waterboards.ca.gov/sanfranciscobay/water_issues/programs/ESL/new/ESL_Summary_Tables_24Jan19_Rev1.pdf>

TIER 1 ESL = The most conservative Environmental Screening Level (ESL) across all potential pathways including leaching, human health, ecologic ("Terrestrial Habitat"), volatilization (inhalation).

L = Indicates the lowest ESL is based on a **potential Leaching pathway** (for groundwater protection).
HH = Indicates the lowest ESL is based on a **potential Human Health & Safety Pathway** (ingestion, inhalation, dermal).
GC = Indicates the lowest ESL is based on a **potential Gross Contamination**.

2 = CA DTSC Soil Screening Levels: From the California Department of Toxic Substances Control (DTSC), Office of Human and Ecological Risk (HERO), Human Health Risk Assessment (HHRA) Note Number 3, Table 1, June 2020. If no DTSC screening level is established then the corresponding US EPA RSL is provided.

US EPA Region 9 Soil Regional Screening Levels (RSLs): From [US EPA Regional Screening Levels for Soil](https://www.epa.gov/risk/region-9-soil-screening-levels) (<https://www.epa.gov/risk/region-9-soil-screening-levels>), last updated May 2020 using the Summary Table [based on Carcinogenic Target Risk (TR) =1E-6, Noncancer Hazard Index (HI) =1.0].

RDL = **Reported Detection Limit** = is the laboratory-determined value that is 2 to 5 times above the Method Detection Limit (MDL) that can be reproduced in a manner that results in a 99% confidence level and is both accurate and precise.

J = Laboratory reports that the detection value is between MDL and RDL, and should be considered an estimate.

ND = Non Detection
NE = Not Established
NA = Not Analyzed
B = The same analyte is found in the associated blank

< = A "less than" symbol indicates no detectable concentrations (i.e., the laboratory did not detect the contaminant at the concentration shown).

Table 7: Summary of **Runway Strip** Delineation Soil Analytical Results

- Arsenic

Former Skypark Airport, Scotts Valley

All soil results are in milligrams per Kilogram (mg/Kg) unless noted

Weber Hayes 2023
During Cleanup

Excavation/Removal of Arsenic
see Figure 5

Sample Information			*Arsenic	
Sample ID	Sample Date	Depth (ft)		
D-1	1/31/2023	0.5	71.9	
		1	5.23	
D-1A	5/3/2023	0.5	2.74	
D-2	1/31/2023	0.5	88.7	
		1	97.6	
		1.5	2.35	
D-2A	5/3/2023	0.5	3.67	
		1	3.14	
D-3	1/31/2023	0.5	59.7	
		1	6.36	
D-3A	5/3/2023	0.5	4.92	
D-4	1/31/2023	0.5	9.75	
		1	5.52	
D-5	1/31/2023	0.5	67.3	
		1	25.1	
		1.5	16.9	
		2	1.75 J	
D-5A	5/3/2023	0.5	3.25	
		1	2.99	
		1.5	1.84 J	
D-6	1/31/2023	0.5	87.3	
		1	6.93	
D-6A	5/3/2023	0.5	< 2.24	
D-7	1/31/2023	0.5	123	
		1	7.02	
D-7A	5/3/2023	0.5	1.66 J	
D-8	1/31/2023	0.5	71.9	
		1	115	
		1.5	9.02	
D-8A	5/3/2023	0.5	2.44	
		1	3.99	
DTSC-Modified Screening Levels ⁽²⁾ (for human health risk) Residential or Commercial Land Use			0.11 / 0.36	
Environmental Screening Levels (ESLs) ⁽¹⁾ Residential or Commercial Land Use (construction worker)			0.067 / 0.31	
"Tier 1 ESL" (all possible pathways & land uses) Basis = Human Health (HH)			0.067 (HH)	

Table 7: Summary of Runway Strip Delineation Soil Analytical Results

- Arsenic

Former Skypark Airport, Scotts Valley

All soil results are in milligrams per Kilogram (mg/Kg) unless noted

Weber Hayes 2023
During Cleanup

Excavation/Removal of Arsenic
see Figure 5

Sample Information			*Arsenic	
Sample ID	Sample Date	Depth (ft)		
D-9	1/31/2023	0.5	135	
		1	11.5	
D-9A	5/3/2023	0.5	1.22 J	
D-10	1/31/2023	0.5	156	
		1	1.46 J	
D-10A	5/3/2023	0.5	0.607 J	
D-11	1/31/2023	0.5	188	
		1	6.65	
D-12	1/31/2023	0.5	281	
		1	129	
		1.5	6.93	
D-13	1/31/2023	0.5	19.3	
		1	3.93	
D-14	1/31/2023	0.5	116	
		1	1.60 J	
D-15	1/31/2023	0.5	139	
		1	3.49	
D-16	1/31/2023	0.5	84.8	
		1	4.54	
D-17	1/31/2023	0.5	5.27	
		1	3.64	
D-18	1/31/2023	0.5	86.6	
		1	< 0.600	
D-19	1/31/2023	0.5	65.1	
		1	172	
		1.5	90.3	
		2	0.937 J	
D-20	1/31/2023	0.5	68.5	
		1	6.38	
D-20A	5/3/2023	0.5	4	
D-21	1/31/2023	0.5	71.6	
		1	< 0.587	
DTSC-Modified Screening Levels ⁽²⁾ (for human health risk) Residential or Commercial Land Use			0.11 / 0.36	
Environmental Screening Levels (ESLs) ⁽¹⁾ Residential or Commercial Land Use (construction worker)			0.067 / 0.31	
"Tier 1 ESL" (all possible pathways & land uses) Basis = Human Health (HH)			0.067 (HH)	

Table 7: Summary of Runway Strip Delineation Soil Analytical Results

- Arsenic

Former Skypark Airport, Scotts Valley

All soil results are in milligrams per Kilogram (mg/Kg) unless noted

Weber Hayes 2023
During Cleanup

Excavation/Removal of Arsenic
see Figure 5

Sample Information			*Arsenic
Sample ID	Sample Date	Depth (ft)	
D-21A	5/3/2023	0.5	8.39
D-22	1/31/2023	0.5	78
		1	2.03 J
D-22A	5/3/2023	0.5	10.7
D-23	1/31/2023	0.5	84.7
		1	0.833 J
D-23A	5/3/2023	0.5	4.57
D-24	1/31/2023	0.5	102
		1	1.98 J
D-24A	5/3/2023	0.5	2.69
D-25	1/31/2023	0.5	91.6
		1	< 0.566
D-25A	5/3/2023	0.5	4.41
D-26	1/31/2023	0.5	81
		1	1.26 J
D-26A	5/3/2023	0.5	1.74 J
D-27	1/31/2023	0.5	1.94 J
		1	0.814 J
D-28	1/31/2023	0.5	2.02 J
		1	1.69 J
D-29	1/31/2023	0.5	21.2
		1	1.81 J
D-29A	5/3/2023	0.5	2.56
D-30	5/3/2023	0.5	2.6
D-31	5/3/2023	0.5	2.89
D-32	5/3/2023	0.5	3.58
D-33	5/3/2023	0.5	6.83
DTSC-Modified Screening Levels ⁽²⁾ (for human health risk) Residential or Commercial Land Use			0.11 / 0.36
Environmental Screening Levels (ESLs) ⁽¹⁾ Residential or Commercial Land Use (construction worker)			0.067 / 0.31
" Tier 1 ESL " (all possible pathways & land uses) Basis = Human Health (HH)			0.067 (HH)

- Notes on following page -

Weber Hayes 2023
During Cleanup

Excavation/Removal of Arsenic
see Figure 5

Table 7: Summary of Runway Strip Delineation Soil Analytical Results

- Arsenic

Former Skypark Airport, Scotts Valley

All soil results are in milligrams per Kilogram (mg/Kg) unless noted

Sample Information			*Arsenic
Sample ID	Sample Date	Depth (ft)	

Notes:

BOLD =	A laboratory result was detected (i.e., detected above the <i>Reported Detection Limit (RDL)</i>).
BOLD =	Lab result was detected above the site-specific background concentration of 12.0 mg/kg*.
*=	Arsenic: A site-specific background arsenic concentration of 12.0 mg/kg has been established for an adjoining parcel (former Suburban Propane property), which was approved by the County of Santa Cruz Environmental Health Division
1 = Environmental Screening Levels (ESLs):	Regional Water Quality Control Board (San Francisco Bay Region) guideline document: <i>Screening for Environmental Concerns at Sites With Contaminated Soil and Groundwater</i> (Final version, 2019). The ESLs are intended to provide quantitative risk-based guidance on whether further assessment or remediation of contamination is warranted < https://www.waterboards.ca.gov/sanfranciscobay/water_issues/programs/ESL/new/ESL_Summary_Tables_24Jan19_Rev1.pdf >
TIER 1 ESL =	The "Tier 1 ESL" =The most conservative <i>Environmental Screening Level</i> (ESL) across all potential pathways including leaching (L), human health (HH, typically for a residential land use) & odor/nuisance (O). Note: ecologic ("Terrestrial Habitat") is not included.
L =	Indicates the lowest ESL is based on a potential Leaching pathway (for groundwater protection).
HH =	Indicates the lowest ESL is based on a potential Human Health & Safety Pathway (ingestion, inhalation, dermal).
GC =	Indicates the lowest ESL is based on a potential "Gross Contamination" (i.e. 5,100 mg/kg for TPH Motor Oil)
2 = CA DTSC Soil Screening Levels:	From the California Department of Toxic Substances Control (DTSC), Office of Human and Ecological Risk (HERO), Human Health Risk Assessment (HHRRA) Note Number 3, Table 1, June 2020. If no DTSC screening level is established then the corresponding US EPA RSL is provided.
US EPA Region 9 Soil Regional Screening Levels (RSLs):	From US EPA Regional Screening Levels for Soil (https://www.epa.gov/risk/region-9-soil-screening-levels-rsls-generic-tables), last updated May 2020 using the Summary Table [based on Carcinogenic Target Risk (TR) =1E-6, Noncancer Hazard Index (HI) =1.0].
-- =	Not Analyzed
J =	Laboratory reports that the detection value is between MDL and RDL, and should be considered an estimate.
< =	A "less than" symbol indicates no detectable concentrations (i.e., the laboratory <u>did not</u> detect the contaminant at the concentration shown).

Table 8: Summary of B-6 Soil Analytical Results
Arsenic

Former Skypark Airport, Scotts Valley

All soil results are in milligrams per Kilogram (mg/Kg) unless noted

Weber Hayes 2023
 During Cleanup
 Excavation/Removal of Arsenic
 see Figure 6

Sample Information			*Arsenic	
Sample ID	Sample Date	Depth (ft)		
B-6	5/18/2021	0.5	15.6	
	1/31/2023	1	5.71	
	5/18/2021	1.5	8.53	
B-6a	1/31/2023	0.5	51.9	
		1	2.91	
B-6b	1/31/2023	0.5	126	
		1	20.9	
		1.5	20.5	
		2	4.69	
B-6c	1/31/2023	0.5	15.3	
		1	70.2	
		1.5	13.5	
		2	10.5	
B-6d	1/31/2023	0.5	1.5 J	
		1	20.3	
		1.5	5.8	
B-6e	1/31/2023	0.5	6.07	
		1	13.8	
		1.5	56.9	
		2	3.31	
DTSC-Modified Screening Levels ⁽²⁾ (for human health risk) Residential or Commercial Land Use			0.11 / 0.36	
Environmental Screening Levels (ESLs) ⁽¹⁾ Residential or Commercial Land Use (construction worker)			0.067 / 0.31	
<i>"Tier 1 ESL"</i> (all possible pathways & land uses) Basis = Human Health (HH)			0.067 (HH)	

Table 8: Summary of B-6 Soil Analytical Results
Arsenic

Former Skypark Airport, Scotts Valley

All soil results are in milligrams per Kilogram (mg/Kg) unless noted

Weber Hayes 2023
 During Cleanup
 Excavation/Removal of Arsenic
 see Figure 6

Sample Information			*Arsenic	
Sample ID	Sample Date	Depth (ft)		
B-6f	1/31/2023	0.5	95.3	
		1	7.95	
B-6g	1/31/2023	0.5	11.5	
		1	99.7	
		1.5	24.5	
		2	32.3	
	5/4/2023	2.5	2.45	
B-6h	1/31/2023	0.5	1.85 J	
		1	2,430	
		1.5	3.95	
B-6i	5/4/2023	0.5	2.71	
		1	2.51	
		1.5	2.11 J	
B-6j	5/4/2023	0.5	27.6	
		1	56.6	
		1.5	4.91	
B-6k	5/4/2023	0.5	10.4	
		1	12.4	
		1.5	8.16	
		2	4.45	
DTSC-Modified Screening Levels ⁽²⁾ (for human health risk) Residential or Commercial Land Use			0.11 / 0.36	
Environmental Screening Levels (ESLs) ⁽¹⁾ Residential or Commercial Land Use (construction worker)			0.067 / 0.31	
"Tier 1 ESL" (all possible pathways & land uses) Basis = Human Health (HH)			0.067 (HH)	

Table 8: Summary of B-6 Soil Analytical Results
Arsenic

Former Skypark Airport, Scotts Valley

All soil results are in milligrams per Kilogram (mg/Kg) unless noted

Weber Hayes 2023
 During Cleanup
 Excavation/Removal of Arsenic
 see Figure 6

Sample Information			*Arsenic	
Sample ID	Sample Date	Depth (ft)		
B-6l	5/4/2023	0.5	3.80	
		1	4.53	
B-6n	5/4/2023	0.5	8.16	
		1	12.5	
B-6o	5/4/2023	1	3.10	
B-6q	5/4/2023	0.5	6.56	
		1	1.86 J	
		1.5	2.45	
B-6s	5/4/2023	0.5	11.5	
		1	6.0	
		1.5	3.07	
B-6u	5/4/2023	0.5	35.6	
		1	10.7	
		1.5	3.50	
B-6v	5/4/2023	0.5	5.03	
B-6w	5/4/2023	0.5	28.9	
		1	16.4	
		1.5	9.44	
B-6x	5/4/2023	0.5	4.71	
		1	3.73	
DTSC-Modified Screening Levels ⁽²⁾ (for human health risk) Residential or Commercial Land Use			0.11 / 0.36	
Environmental Screening Levels (ESLs) ⁽¹⁾ Residential or Commercial Land Use (construction worker)			0.067 / 0.31	
<i>"Tier 1 ESL"</i> (all possible pathways & land uses) Basis = Human Health (HH)			0.067 (HH)	

-Notes on following page-

Table 8: Summary of B-6 Soil Analytical Results
Arsenic

Former Skypark Airport, Scotts Valley

All soil results are in milligrams per Kilogram (mg/Kg) unless noted

Weber Hayes 2023
 During Cleanup
 Excavation/Removal of Arsenic
 see Figure 6

Sample Information			*Arsenic
<i>Sample ID</i>	<i>Sample Date</i>	<i>Depth (ft)</i>	

Notes:

BOLD = A laboratory result was detected (i.e., detected above the *Reported Detection Limit* (RDL).

BOLD = Lab result was detected **above** the site-specific background concentration of 12.0 mg/kg*.

* = [Arsenic: A site-specific background arsenic concentration of 12.0 mg/kg has been established for an adjoining parcel \(former Suburban Propane property\), which was approved by the County of Santa Cruz Environmental Health Division](#)

1 = **Environmental Screening Levels (ESLs):** Regional Water Quality Control Board (San Francisco Bay Region) guideline document: *Screening for Environmental Concerns at Sites With Contaminated Soil and Groundwater* (Final version, 2019). The ESLs are intended to provide quantitative risk-based guidance on whether further assessment or remediation of contamination is warranted
https://www.waterboards.ca.gov/sanfranciscobay/water_issues/programs/ESL/new/ESL_Summary_Tables_24Jan19_Rev1.pdf

TIER 1 ESL = The " **Tier 1 ESL**" =The most conservative *Environmental Screening Level* (ESL) across all potential pathways including leaching (L), human health (HH, typically for a residential land use) & odor/nuisance (O). Note: ecologic ("Terrestrial Habitat") is not included.

L = Indicates the lowest ESL is based on a **potential Leaching pathway** (for groundwater protection).

HH = Indicates the lowest ESL is based on a **potential Human Health & Safety Pathway** (ingestion, inhalation, dermal).

GC = Indicates the lowest ESL is based on a **potential "Gross Contamination"** (i.e. 5,100 mg/kg for TPH Motor Oil)

2 = **CA DTSC Soil Screening Levels:** From the California Department of Toxic Substances Control (DTSC), Office of Human and Ecological Risk (HERO), Human Health Risk Assessment (HHRA) Note Number 3, Table 1, June 2020. **If no DTSC screening level is established then the corresponding US EPA RSL is provided.**

US EPA Region 9 Soil Regional Screening Levels (RSLs): From [US EPA Regional Screening Levels for Soil](https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables) (<https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables>), last updated May 2020 using the Summary Table [based on Carcinogenic Target Risk (TR) =1E-6, Noncancer Hazard Index (HI) =1.0].

-- = Not Analyzed

J = Laboratory reports that the detection value is between MDL and RDL, and should be considered an estimate.

< = A "less than" symbol indicates no detectable concentrations (i.e., the laboratory did not detect the contaminant at the concentration shown).

Weber Hayes 2023
During Cleanup

Excavation/Removal of Arsenic
see Figure 7

Table 9: Summary of B-24 Soil Analytical Results

Arsenic

Former Skypark Airport, Scotts Valley

All soil results are in milligrams per Kilogram (mg/Kg) unless noted

<i>Sample Information</i>			<i>*Arsenic</i>
<i>Sample ID</i>	<i>Sample Date</i>	<i>Depth (ft)</i>	
B-24	5/17/2021	0.5	15.9
	2/1/2023	1	1.44 J
	5/17/2021	1.5	2.43
B-24a	2/1/2023	0.5	2.62
	2/1/2023	1	1.79 J
B-24b	2/1/2023	0.5	1.94 J
	2/1/2023	1	1.41 J
B-24c	2/1/2023	0.5	2.74
	2/1/2023	1	4.16
B-24d	2/1/2023	0.5	3.24
	2/1/2023	1	1.79 J
B-24e	2/1/2023	0.5	4.37
	2/1/2023	1	1.10 J
B-24f	2/1/2023	0.5	2.44
	2/1/2023	1	1.39 J
B-24g	2/1/2023	0.5	8.29
	2/1/2023	1	1.22 J
B-24h	2/1/2023	0.5	6.28
	2/1/2023	1	2.10 J
DTSC-Modified Screening Levels ⁽²⁾ (for human health risk) Residential or Commercial Land Use			0.11 / 0.36
Environmental Screening Levels (ESLs) ⁽¹⁾ Residential or Commercial Land Use (construction worker)			0.067 / 0.31
" Tier 1 ESL " (all possible pathways & land uses) Basis = Human Health (HH)			0.067 (HH)

-Notes on following page-

Weber Hayes 2023
During Cleanup

Excavation/Removal of Arsenic
see Figure 7

Table 9: Summary of B-24 Soil Analytical Results

Arsenic

Former Skypark Airport, Scotts Valley

All soil results are in milligrams per Kilogram (mg/Kg) unless noted

Sample Information			*Arsenic
Sample ID	Sample Date	Depth (ft)	

Notes:

BOLD =
BOLD =

A laboratory result was detected (i.e., detected above the *Reported Detection Limit (RDL)*).

Lab result was detected **above** the site-specific background concentration of 12.0 mg/kg*.

*= [Arsenic: A site-specific background arsenic concentration of 12.0 mg/kg, has been established for an adjoining parcel \(former Suburban Propane property\), which was approved by the County of Santa Cruz Environmental Health Division](#)

1 = Environmental Screening Levels (ESLs): Regional Water Quality Control Board (San Francisco Bay Region) guideline document: *Screening for Environmental Concerns at Sites With Contaminated Soil and Groundwater* (Final version, 2019). The ESLs are intended to provide quantitative risk-based guidance on whether further assessment or remediation of contamination is warranted
<https://www.waterboards.ca.gov/sanfranciscobay/water_issues/programs/ESL/new/ESL_Summary_Tables_24Jan19_Rev1.pdf>

TIER 1 ESL = The " Tier 1 ESL" =The most conservative *Environmental Screening Level (ESL)* across all potential pathways including leaching (L), human health (HH, typically for a residential land use) & odor/nuisance (O). Note: ecologic ("Terrestrial Habitat") is not included.

L = Indicates the lowest ESL is based on a **potential Leaching pathway** (for groundwater protection).

HH = Indicates the lowest ESL is based on a **potential Human Health & Safety Pathway** (ingestion, inhalation, dermal).

GC = Indicates the lowest ESL is based on a **potential "Gross Contamination"** (i.e. 5,100 mg/kg for TPH Motor Oil)

2 = CA DTSC Soil Screening Levels: From the California Department of Toxic Substances Control (DTSC), Office of Human and Ecological Risk (HERO), Human Health Risk Assessment (HHRA) Note Number 3, Table 1, June 2020. If no DTSC screening level is established then the corresponding US EPA RSL is provided.

US EPA Region 9 Soil Regional Screening Levels (RSLs): From [US EPA Regional Screening Levels for Soil](#) (<https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables>), last updated May 2020 using the Summary Table [based on Carcinogenic Target Risk (TR) =1E-6, Noncancer Hazard Index (HI) =1.0].

-- = Not Analyzed

J = Laboratory reports that the detection value is between MDL and RDL, and should be considered an estimate.

< = A "less than" symbol indicates no detectable concentrations (i.e., the laboratory did not detect the contaminant at the concentration shown).

Weber Hayes 2023
During Cleanup

Excavation/Removal of Arsenic
see Figure 8

Table 10: Summary of B-25 Soil Analytical Results
Arsenic

Former Skypark Airport, Scotts Valley

All soil results are in milligrams per Kilogram (mg/Kg) unless noted

<i>Sample Information</i>			<i>*Arsenic</i>
<i>Sample ID</i>	<i>Sample Date</i>	<i>Depth (ft)</i>	
B-25	5/17/2021	0.5	53.6
	2/1/2023	1	11.2
	5/17/2021	1.5	4.91
B-25a	2/1/2023	0.5	< 0.566
	2/1/2023	1	3.65
B-25b	2/1/2023	0.5	4.16
	2/1/2023	1	4.46
B-25c	2/1/2023	0.5	0.730 J
	2/1/2023	1	7.45
B-25d	2/1/2023	0.5	0.963
	2/1/2023	1	4.95
B-25e	2/1/2023	0.5	0.858 J
	2/1/2023	1	5.7
B-25f	2/1/2023	0.5	8.17
	2/1/2023	1	10
B-25g	2/1/2023	0.5	5.23
	2/1/2023	1	4.41
B-25h	2/1/2023	0.5	< 0.533
	2/1/2023	1	4.44
DTSC-Modified Screening Levels ⁽²⁾ (for human health risk) Residential or Commercial Land Use			0.11 / 0.36
Environmental Screening Levels (ESLs) ⁽¹⁾ Residential or Commercial Land Use (construction worker)			0.067 / 0.31
"Tier 1 ESL" (all possible pathways & land uses) Basis = Human Health (HH)			0.067 (HH)

-Notes on following page-

Weber Hayes 2023
During Cleanup

Excavation/Removal of Arsenic
see Figure 8

Table 10: Summary of B-25 Soil Analytical Results

Arsenic

Former Skypark Airport, Scotts Valley

All soil results are in milligrams per Kilogram (mg/Kg) unless noted

<i>Sample Information</i>			<i>*Arsenic</i>
<i>Sample ID</i>	<i>Sample Date</i>	<i>Depth (ft)</i>	

Notes:

BOLD =
BOLD =

A laboratory result was detected (i.e., detected above the *Reported Detection Limit* (RDL).

Lab result was detected **above** the site-specific background concentration of 12.0 mg/kg*.

* = [Arsenic: A site-specific background arsenic concentration of 12.0 mg/kg has been established for an adjoining parcel \(former Suburban Propane property\), which was approved by the County of Santa Cruz Environmental Health Division](#)

1 = **Environmental Screening Levels (ESLs)**: Regional Water Quality Control Board (San Francisco Bay Region) guideline document: *Screening for Environmental Concerns at Sites With Contaminated Soil and Groundwater* (Final version, 2019). The ESLs are intended to provide quantitative risk-based guidance on whether further assessment or remediation of contamination is warranted
<https://www.waterboards.ca.gov/sanfranciscobay/water_issues/programs/ESL/new/ESL_Summary_Tables_24Jan19_Rev1.pdf>

TIER 1 ESL = The " **Tier 1 ESL**" =The most conservative *Environmental Screening Level* (ESL) across all potential pathways including leaching (L), human health (HH, typically for a residential land use) & odor/nuisance (O). Note: ecologic ("Terrestrial Habitat") is not included.

L = Indicates the lowest ESL is based on a **potential Leaching pathway** (for groundwater protection).

HH = Indicates the lowest ESL is based on a **potential Human Health & Safety Pathway** (ingestion, inhalation, dermal).

GC = Indicates the lowest ESL is based on a **potential "Gross Contamination"** (i.e. 5,100 mg/kg for TPH Motor Oil)

2 = **CA DTSC Soil Screening Levels**: From the California Department of Toxic Substances Control (DTSC), Office of Human and Ecological Risk (HERO), Human Health Risk Assessment (HHRA) Note Number 3, Table 1, June 2020. **If no DTSC screening level is established then the corresponding US EPA RSL is provided.**

US EPA Region 9 Soil Regional Screening Levels (RSLs): From [US EPA Regional Screening Levels for Soil](#) (<https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables>), last updated May 2020 using the Summary Table [based on Carcinogenic Target Risk (TR) =1E-6, Noncancer Hazard Index (HI) =1.0].

-- = Not Analyzed

J = Laboratory reports that the detection value is between MDL and RDL, and should be considered an estimate.

< = A "less than" symbol indicates no detectable concentrations (i.e., the laboratory did not detect the contaminant at the concentration shown).

Weber Hayes 2023
During Cleanup

Excavation/Removal of Arsenic
see Figure 9

Table 11: Summary of B-30 Soil Analytical Results
Arsenic

Former Skypark Airport, Scotts Valley
All soil results are in milligrams per Kilogram (mg/Kg) unless noted

Sample Information			*Arsenic	
Sample ID	Sample Date	Depth (ft)		
B-30	5/19/2021	0.5	15.7	
	2/1/2023	1	81.1	
	5/19/2021	1.5	1.42	
B-30a	2/1/2023	0.5	< 1.32	
		1	12.6	
		1.5	3.59 J	
B-30b	2/1/2023	0.5	1.81 J	
		1	6.24	
B-30c	2/1/2023	0.5	< 1.90	
		1	17.9	
		1.5	25.6	
		2	3.2	
B-30d	2/1/2023	0.5	2.03 J	
		1	5.76	
B-30e	2/1/2023	0.5	2.63 J	
		1	22	
		1.5	8.17	
B-30f	2/1/2023	0.5	6.56	
		1	13.3	
		1.5	30.3	
		2	12.9	
	5/4/2023	2.5	< 2.17	
B-30g	2/1/2023	0.5	3.79 J	
		1	17.4	
		1.5	5.21	
B-30h	2/1/2023	0.5	2.46 J	
		1	17.7	
		1.5	8.63	
DTSC-Modified Screening Levels ⁽²⁾ (for human health risk) Residential or Commercial Land Use			0.11 / 0.36	
Environmental Screening Levels (ESLs) ⁽¹⁾ Residential or Commercial Land Use (construction worker)			0.067 / 0.31	
"Tier 1 ESL" (all possible pathways & land uses) Basis = Human Health (HH)			0.067 (HH)	

Weber Hayes 2023
During Cleanup

Excavation/Removal of Arsenic
see Figure 9

Table 11: Summary of B-30 Soil Analytical Results

Arsenic

Former Skypark Airport, Scotts Valley

All soil results are in milligrams per Kilogram (mg/Kg) unless noted

Sample Information			*Arsenic	
Sample ID	Sample Date	Depth (ft)		
B-30i	5/4/2023	0.5	3.77	
		1	2.81	
B-30j	5/4/2023	0.5	0.889 J	
		1	< 2.51	
		1.5	1.17 J	
		2	0.862 J	
B-30k	5/4/2023	0.5	3.28	
		1	0.680 J	
		1.5	< 2.37	
B-30l	5/4/2023	0.5	1.31 J	
		1	4.4	
		1.5	1.83 J	
B-30q	5/4/2023	0.5	1.02 J	
		1	2.91	
		1.5	< 2.55	
B-30s	5/4/2023	0.5	2.02 J	
		1	< 2.26	
		1.5	< 2.35	
B-30u	5/4/2023	0.5	< 2.25	
		1	2.83	
		1.5	< 2.33	
B-30w	5/4/2023	0.5	1.17 J	
		1	3.32	
		1.5	2.62	
DTSC-Modified Screening Levels ⁽²⁾ (for human health risk) Residential or Commercial Land Use			0.11 / 0.36	
Environmental Screening Levels (ESLs) ⁽¹⁾ Residential or Commercial Land Use (construction worker)			0.067 / 0.31	
<i>"Tier 1 ESL"</i> (all possible pathways & land uses) Basis = Human Health (HH)			0.067 (HH)	

-Notes on following page-

Weber Hayes 2023
During Cleanup

Excavation/Removal of Arsenic
see Figure 9

Table 11: Summary of B-30 Soil Analytical Results

Arsenic

Former Skypark Airport, Scotts Valley

All soil results are in milligrams per Kilogram (mg/Kg) unless noted

Sample Information			*Arsenic
Sample ID	Sample Date	Depth (ft)	

Notes:

BOLD =	A laboratory result was detected (i.e., detected above the <i>Reported Detection Limit</i> (RDL).
BOLD =	Lab result was detected above the site-specific background concentration of 12.0 mg/kg*.

*= [Arsenic: A site-specific background arsenic concentration of 12.0 mg/kg has been established for an adjoining parcel \(former Suburban Propane property\), which was approved by the County of Santa Cruz Environmental Health Division](#)

1 = **Environmental Screening Levels (ESLs):** Regional Water Quality Control Board (San Francisco Bay Region) guideline document: *Screening for Environmental Concerns at Sites With Contaminated Soil and Groundwater* (Final version, 2019). The ESLs are intended to provide quantitative risk-based guidance on whether further assessment or remediation of contamination is warranted https://www.waterboards.ca.gov/sanfranciscobay/water_issues/programs/ESL/new/ESL_Summary_Tables_24Jan19_Rev1.pdf

TIER 1 ESL = The "Tier 1 ESL" =The most conservative *Environmental Screening Level (ESL)* across all potential pathways including leaching (L), human health (HH, typically for a residential land use) & odor/nuisance (O). Note: ecologic ("Terrestrial Habitat") is not included.

L = Indicates the lowest ESL is based on a **potential Leaching pathway** (for groundwater protection).

HH = Indicates the lowest ESL is based on a **potential Human Health & Safety Pathway** (ingestion, inhalation, dermal).

GC = Indicates the lowest ESL is based on a **potential "Gross Contamination"** (i.e. 5,100 mg/kg for TPH Motor Oil)

2 = **CA DTSC Soil Screening Levels:** From the California Department of Toxic Substances Control (DTSC), Office of Human and Ecological Risk (HERO), Human Health Risk Assessment (HHRA) Note Number 3, Table 1, June 2020. If no DTSC screening level is established then the corresponding US EPA RSL is provided.

US EPA Region 9 Soil Regional Screening Levels (RSLs): From [US EPA Regional Screening Levels for Soil](#) (<https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables>), last updated May 2020 using the Summary Table [based on Carcinogenic Target Risk (TR) =1E-6, Noncancer Hazard Index (HI) =1.0].

-- = Not Analyzed

J = Laboratory reports that the detection value is between MDL and RDL, and should be considered an estimate.

< = A "less than" symbol indicates no detectable concentrations (i.e., the laboratory did not detect the contaminant at the concentration shown).

Weber Hayes 2023
During Cleanup

Excavation/Removal of Diesel
see Figure 10

Table 12: Summary of B-40 Soil Analytical Results

TPH-d

Former Skypark Airport, Scotts Valley

All soil results are in milligrams per Kilogram (mg/Kg) unless noted

Sample Information			TPH as DIESEL (C12-C22)
Sample ID	Sample Date	Depth (ft)	
B-40	5/17/2021	0.5	14.9 J
	5/17/2021	1.5	1,870
	5/17/2021	2.5	< 4.36
B-40a	1/31/2023	1.5	2.58 J
	1/31/2023	2.5	23.5 J
B-40b	1/31/2023	1.5	< 4.02
	1/31/2023	2.5	0.903 J
B-40c	1/31/2023	1.5	< 79.9
	1/31/2023	2.5	< 0.812
B-40d	1/31/2023	1.5	< 81.4
	1/31/2023	2.5	< 168
B-40e	1/31/2023	1.5	8.2 J
	1/31/2023	2.5	< 8.18
B-40f	1/31/2023	1.5	< 32.4
	1/31/2023	2.5	< 0.822
B-40g	1/31/2023	1.5	< 83.7
	1/31/2023	2.5	4.85
B-40h	1/31/2023	1.5	< 80.5
	1/31/2023	2.5	< 0.804
DTSC-Modified Screening Levels ⁽²⁾ (for human health risk) Residential or Commercial Land Use			NE
Environmental Screening Levels (ESLs) ⁽¹⁾ Residential or Commercial Land Use (construction worker)			260 / 1,200 / (1,100)
"Tier 1 ESL" (all possible pathways & land uses) Basis = Human Health (HH)			260 (HH)

-Notes on following page-

Weber Hayes 2023
During Cleanup

Excavation/Removal of Diesel
see Figure 10

Table 12: Summary of B-40 Soil Analytical Results

TPH-d

Former Skypark Airport, Scotts Valley

All soil results are in milligrams per Kilogram (mg/Kg) unless noted

Sample Information			TPH as DIESEL (C12-C22)
Sample ID	Sample Date	Depth (ft)	

Notes:

BOLD =	A laboratory result was detected (i.e., detected above the Reported Detection Limit (RDL).
BOLD =	Lab result was detected above the ESL or DTSC Residential Land Use Threshold.
BOLD =	Lab result was detected above the ESL or DTSC Commercial Land Use or Construction Worker Threshold .

1 = Environmental Screening Levels (ESLs): Regional Water Quality Control Board (San Francisco Bay Region) guideline document: *Screening for Environmental Concerns at Sites With Contaminated Soil and Groundwater* (Final version, 2019). The ESLs are intended to provide quantitative risk-based guidance on whether further assessment or remediation of contamination is warranted
[<https://www.waterboards.ca.gov/sanfranciscobay/water_issues/programs/ESL/new/ESL_Summary_Tables_24Jan19_Rev1.pdf>](https://www.waterboards.ca.gov/sanfranciscobay/water_issues/programs/ESL/new/ESL_Summary_Tables_24Jan19_Rev1.pdf)

TIER 1 ESL = The " **Tier 1 ESL**" =The most conservative *Environmental Screening Level (ESL)* across all potential pathways including leaching (L), human health (HH, typically for a residential land use) & odor/nuisance (O). Note: ecologic ("Terrestrial Habitat") is not included.

L = Indicates the lowest ESL is based on a **potential Leaching pathway** (for groundwater protection).

HH = Indicates the lowest ESL is based on a **potential Human Health & Safety Pathway** (ingestion, inhalation, dermal).

GC = Indicates the lowest ESL is based on a **potential "Gross Contamination"** (i.e. 5,100 mg/kg for TPH Motor Oil)

2 = CA DTSC Soil Screening Levels: From the California Department of Toxic Substances Control (DTSC), Office of Human and Ecological Risk (HERO), Human Health Risk Assessment (HHRA) Note Number 3, Table 1, June 2020. **If no DTSC screening level is established then the corresponding US EPA RSL is provided.**

US EPA Region 9 Soil Regional Screening Levels (RSLs): From *US EPA Regional Screening Levels for Soil* (<https://www.epa.gov/risk/section-3-rsls-generic-tables>), last updated May 2020 using the Summary Table [based on Carcinogenic Target Risk (TR) =1E-6, Noncancer Hazard Index (HI) =1.0].

-- = Not Analyzed

J = Laboratory reports that the detection value is between MDL and RDL, and should be considered an estimate.

<= A "less than" symbol indicates no detectable concentrations (i.e., the laboratory did not detect the contaminant at the concentration shown).

Table 13: Summary of SB-8 Soil Analytical Results
Lead

Former Skypark Airport, Scotts Valley

All soil results are in milligrams per Kilogram (mg/Kg) unless noted

Weber Hayes 2023
 During Cleanup

Excavation/Removal of Lead
 see Figure 11

<i>Sample Information</i>			<i>Lead</i>
<i>Sample ID</i>	<i>Sample Date</i>	<i>Depth (ft)</i>	
SB-8	2014	0.5	110
	2/1/2023	1	6.93
SB-8a	2/1/2023	0.5	14.2
	2/1/2023	1	10.3
SB-8b	2/1/2023	0.5	9.3
	2/1/2023	1	7.53
SB-8c	2/1/2023	0.5	9.07
	2/1/2023	1	8.48
SB-8d	2/1/2023	0.5	8.35
	2/1/2023	1	11.3
SB-8e	2/1/2023	0.5	11.1
	2/1/2023	1	7.48
SB-8f	2/1/2023	0.5	9.25
	2/1/2023	1	5.95
SB-8g	2/1/2023	0.5	7.25
	2/1/2023	1	5.83
SB-8h	2/1/2023	0.5	7.29
	2/1/2023	1	10.8
DTSC-Modified Screening Levels ⁽²⁾ (for human health risk) Residential or Commercial Land Use			80 / 320
Environmental Screening Levels (ESLs) ⁽¹⁾ Residential or Commercial Land Use (construction worker)			80 / 320 (160)
<i>"Tier 1 ESL"</i> (all possible pathways & land uses) Basis = Human Health (HH)			80 (HH)

-Notes on following page-

Table 13: Summary of SB-8 Soil Analytical Results

Lead

Former Skypark Airport, Scotts Valley

All soil results are in milligrams per Kilogram (mg/Kg) unless noted

Weber Hayes 2023
During Cleanup

Excavation/Removal of Lead
see Figure 11

Sample Information			Lead
Sample ID	Sample Date	Depth (ft)	

Notes:

BOLD =	A laboratory result was detected (i.e., detected above the Reported Detection Limit (RDL).
BOLD =	Lab result was detected above the ESL or DTSC Residential Land Use Threshold.
BOLD =	Lab result was detected above the ESL or DTSC Commercial Land Use or Construction Worker Threshold .

1 = Environmental Screening Levels (ESLs): Regional Water Quality Control Board (San Francisco Bay Region) guideline document: *Screening for Environmental Concerns at Sites With Contaminated Soil and Groundwater* (Final version, 2019). The ESLs are intended to provide quantitative risk-based guidance on whether further assessment or remediation of contamination is warranted
[<https://www.waterboards.ca.gov/sanfranciscobay/water_issues/programs/ESL/new/ESL_Summary_Tables_24Jan19_Rev1.pdf>](https://www.waterboards.ca.gov/sanfranciscobay/water_issues/programs/ESL/new/ESL_Summary_Tables_24Jan19_Rev1.pdf)

TIER 1 ESL = The " Tier 1 ESL" =The most conservative *Environmental Screening Level (ESL)* across all potential pathways including leaching (L), human health (HH, typically for a residential land use) & odor/nuisance (O). Note: ecologic ("Terrestrial Habitat") is not included.

L = Indicates the lowest ESL is based on a **potential Leaching pathway** (for groundwater protection).

HH = Indicates the lowest ESL is based on a **potential Human Health & Safety Pathway** (ingestion, inhalation, dermal).

GC = Indicates the lowest ESL is based on a **potential "Gross Contamination"** (i.e. 5,100 mg/kg for TPH Motor Oil)

2 = CA DTSC Soil Screening Levels: From the California Department of Toxic Substances Control (DTSC), Office of Human and Ecological Risk (HERO), Human Health Risk Assessment (HHRA) Note Number 3, Table 1, June 2020. If no DTSC screening level is established then the corresponding US EPA RSL is provided.

US EPA Region 9 Soil Regional Screening Levels (RSLs): From [US EPA Region 9 Soil Screening Levels](https://www.epa.gov/risk/region-9-soil-screening-levels) (<https://www.epa.gov/risk/region-9-soil-screening-levels>), last updated May 2020 using the Summary Table [based on Carcinogenic Target Risk (TR) =1E-6, Noncancer Hazard Index (HI) =1.0].

-- = Not Analyzed

J = Laboratory reports that the detection value is between MDL and RDL, and should be considered an estimate.

< = A "less than" symbol indicates no detectable concentrations (i.e., the laboratory did not detect the contaminant at the concentration shown).

Attachment 4

Extent of Ground Water Contamination

- Boring Logs for SB-29, SB-31 & SB-33 (April 2014)
- Table : Summary of Grab-Groundwater Results - TPH and VOCs – (April 2014)

BUREAU
VERITAS

LOG OF
SOIL
BORING

Project No.:	33114-014014.01		BORING NO.
Project Name:	PDC - Scotts Valley		SB-29
Location:			
Logged By:			
Start Date:	4-24-2014	Start Time: 0925	Elevation (ft, msl):
Finish Date:	"	Finish Time: :	Boring Diameter (in)
Driller:	ECA - Direct Push		
Hamm			
Borehole Completion	Sealed to surface - HYDRATED BENTONITE NESTED TEMP SOIL VAPOR PROBES 4.5' & 16.5' 11:00 - REMOVED		
Depth To Σ (ft)			Depth To Σ (ft)
Time:			Time:
Date:			Date:

SAMPLE INTERVAL	SAMPLE RECOVERY (in)	SAMPLE ID	PID READING (ppm)	TIME	DEPTH (ft)	SAMPLE	GRAPHIC LOG	USCS	DESCRIPTION
0-5					11.1	5m	X		SILTY SAND, LT. BROWN, FINES 15-25%, SAND; F-MED, DRY
24 3.5	0.0	0948			1				SAND, BROWN TO GRAY, FINES 10%, SAND; FINE-MED TRACE GRAVEL, DENSE, DRY TO WET
38	0952				2		SP		
					3				
					4				
					5		SC		CLAYEY SAND, BROWN, DENSE, DAMP
					6		SC		TAN MOTTLED
					7		SC		GRAVELLY CLAYEY SAND, TAN MOTTLED ORANGE-BROWN FINES 10-30%, SAND; FINE-MED, SANDSTONE GRAVEL CLSTS DAMP
					8		SC		CLAYEY-SILTY SAND, LT. GRAY, BIOTURBATED, DENSE, DAMP
					9		SP		GRAVELLY SAND, LIGHT GRAY MOTTLED ORANGE-BROWN DENSE, DAMP
					10				
					11				
					12		SP		SAND, LIGHT GRAY, TRACE FINES, MED. SANDS, DENSE, DAMP
					13				
					14				
					15				
					16				
					17				REFUSAL AT 17.0' <i>by hand</i>
					18				
					19				

BUREAU
VERITAS

LOG OF SOIL BORING

Project No.:	33114-014014.01	BORING NO.	
Project Name:	PDC - Scotts Valley	SB- 31	
Location:	D. Ashton		
Logged By:			
Start Date:	4-24 -2014	Start Time: 1105	
Finish Date:	"	Finish Time: :	
		Elevation (ft, msl):	
		Boring Diameter (in)	
Driller:	ECA - Direct Push	SAMPLING	
Hammer	TEMP PVC WELL CASING INSTALLED FOR GROUNDWATER		
Borehole Completion	Sealed to surface - BENTONITE CHIPS TO 4.5'	THEN INSTALL TEMP VARIOUS PROBE @ 12 1/2' SAMPLE REMOVED	
Depth To ∇ (ft)	8.5	Depth To ∇ (ft)	4.5
Time:	12:05	Time:	12:50
Date:	4-24	Date:	4-24

SAMPLE INTERVAL	SAMPLE RECOVERY (in)	SAMPLE ID	PID READING (ppm)	TIME	DEPTH (ft)	SAMPLE	GRAPHIC LOG	USCS	DESCRIPTION
0.5					1	X	SM		SILTY SAND, DARK BROWN, FINES: 15-25% SAND: FINE to MEDIUM, ROOTLES common TO 0.5' (60), COOSE to DENSE, DAMP
3.5	0.0	1110			2				GRAVELLY - SILTY SAND, TAN to YELLOW-ORANGE FINES: 20-40%, SAND: FINE to COARSE, SUBANGULAR GRAVEL: 10-15%, DAMP, DENSE (2.6-2.9' CLAYEY SAND)
					3	X			
					4				
					5				
					6				AT 6.0 - 7.5 FEET (60) - MEDIUM SAND WITH SUBGRAVEL GRAVEL
					7				
					8				
					9				AT 9.0 - 9.3 FEET (60) - CRUSHED SANDSTONE
					10				
					11				SAND, LIGHT GRAY, TRACE FINES, SAND: FINE to MED DENSE, MOIST
					12				
					13				
					14				
					15				REFUSAL AT 14.9' (60)
					16				(12:15 ~ GRAB-GROUNDWATER SAMPLE SB-31W)
					17				
					18				
					19				

BUREAU
VERITAS

LOG OF SOIL BORING

Project No.:	33114-014014.01	BORING NO.
Project Name:	PDC - Scotts Valley	SB-33
Location:	D. Ashton	
Logged By:		
Start Date:	4-24-2014	Start Time: 1325 Elevation (ft, msl):
Finish Date:	"	Finish Time: : Boring Diameter (in):
Driller:	ECA - Direct Push	
Hammer:	TEMP PVC WELL CASING TO 17.0' UGS - GROUNDWATER SAMPLED	
Borehole Completion:	Sealed to surface - BENTONITE CHIPS TO 5.0'	
	TEMP VAPOR PROBE AT 4.5' - SET 15:10, SAMPLE SB-33V - REMOVED	
Depth To Σ (ft)	5.2	Depth To Σ (ft)
Time:	14:20	Time:
Date:	4-24	Date:

SAMPLE INTERVAL	SAMPLE RECOVERY (in)	PID READING (ppm)	TIME	DEPTH (ft)	SAMPLE	GRAPHIC LOG	USCS	DESCRIPTION
				1	X	SP		GRAVELLY SAND, LIGHT BROWN (FILL) FINES 10%, SAND: FINE-COARSE, GRAVEL TO 1/2", DRY-DAMP (0.9-1.1' CRUSHED ASPHALT)
0.5				2	X	SP		GRAVELLY SAND TO SAND, Brown, TRACE FINESES, SAND: FINE-MED, GRAVEL: 5-15% SUBBROWN, DENSE, DAMP
				3	X	SP		
				4	X	SP		
				5	X	SP		SAND, DARK GRAY, TO LIGHT GRAY, TRACE FINESES SAND: FINE-MED, DENSE, MOIST-WET
				6	X	SP		
				7	X	SC		CLAYEY SAND, LIGHT BROWN TO ORANGE-BROWN, FINESES 20-30% SAND: FINE-MED, DENSE, MOIST
				8	X	SC		
3.5	0.0	1330		9	X	SC		GRAVELLY SAND, TAN TO ORANGE-BROWN, FINESES 10-30% SAND: FINE-COARSE, GRAVEL 5-15%, ANGULAR DENSE, MOIST (NOTED MED SAND INTERBEDS IN 0.1' THICK)
				10	X	SC		
				11	X	SC		AT 11.0' - SANDSTONE FRAGS AND CRYSTALLINE GRAVEL
				12	X	SC		
				13	X	SC		SAND, LIGHT GRAY TO YELLOWISH GRAY, TRACE FINESES SAND: MEDIUM, DENSE, MOIST
				14	X	SC		
				15	X	SP		
				16	X	SP		
				17	X	SP		
				18	X	SP		
				19	X	SP		
				20	X	SP		
				21	X	SP		(14:30 - GRAB-GROUNDWATER SAMPLE SB-33W)
								REFUSAL AT 21.0 FEET UGS - CAVED TO 17.0'

Table
Grab Groundwater Sample Analytical Results
Total Petroleum Hydrocarbons (TPH) & Volatile Organic Compounds (VOCs)

Former Scotts Valley Airport, Scotts Valley

All water results are in micrograms per liter (ug/L)

(sampled on April 24, 2014)

Sample Information			Total Petroleum Hydrocarbons (TPH) by EPA Method 8015			Volatile Organic Compounds by EPA Method 8260B								
Location ID	Total Boring Depth (feet bgs)	Depth To Water (feet bgs)	TPH as MOTOR OIL (C22 - C32**)	TPH as DIESEL (C12 - C22)	TPH as GASOLINE (C5 - C12)	Benzene	Toluene	Ethyl-benzene	Xylenes	MTBE	Naphthalene	PCE	Other VOC's	
SB-31W	14.9	4.5	<100	<51	<50	<0.50	<0.50	<0.50	<1	<0.5	<1	<0.5	ND	
SB-33W	21	4.5	240	220	<50	<0.50	<0.50	<0.50	<1	<0.5	<1	<0.5	ND	
DW-1 (Abandoned Domestic Supply Well)	--	1	220	150	<50	<0.50	<0.50	<0.50	<1	<0.5	<1	<0.5	ND	
Maximum Contamination Limit (MCL) ⁽¹⁾ (+ Human Health ESL if no MCL established)			Not Established	200	760	1	150	300	1,750	13	0.17	5	Varies	
Environmental Screening Levels (ESLs) ⁽²⁾			Not Established	100 (odor nuisance)	100 (odor nuisance)	0.42 (vapor intrusion)	40 (odor nuisance)	3.5 (vapor intrusion)	20 (odor nuisance)	5 (odor nuisance)	0.17 (Canc Risk)	0.64 (vapor intrusion)	Varies	

Notes

1 = **Water Quality Goals** (WQGs): The listed **Water Quality Goals** listed are based on **Maximum Contaminant Levels (MCLs)** - see note below. However, if a MCL does not exist for a constituent, the listed WQG is based on **Environmental Screening Levels (ESLs)** - constituents with a WQG based on an ESLs are identified with an asterisk ("*"), see note below.

Maximum Contaminant Levels (MCLs): < https://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/Chemicalcontaminants.html >. MCL's are drinking water standards established in Title 22 of the California Code of Regulations for safe water coming from a tap or a drinking water aquifer. If no MCL is available the corresponding **Environmental Screening Level (ESL, below)** health based pathway will be used in its place.

2 = **Environmental Screening Levels (ESLs):** < https://www.waterboards.ca.gov/sanfranciscobay/water_issues/programs/esl.html > The ESLs are agency-established threshold concentrations intended to provide quantitative risk-based guidance on whether further assessment or remediation of contamination is warranted based on risk pathways (protection of human health, groundwater and/or ecological). Source: The Regional Water Quality Control Board (San Francisco Bay Region) guideline document: Screening for Environmental Concerns at Sites With Contaminated Soil and Groundwater (Final version, 2019).

BOLD = Laboratory detected concentration is equal to or greater than the corresponding MCL or ESL

** = C22-C32 is the carbon chain range established for Motor Oil-range petroleum hydrocarbons. The C32-C40 range is for residual oils (asphalt, crude oil, etc.).

bgs= below ground surface.

< X = Constituent not detected above the laboratory-Reported Detection Limit (RDL, X). Refer to laboratory reports for detection limits.

NE= Not Established

RDL = **Reported Detection Limit** = is the laboratory-determined value that is 2 to 5 times above the Method Detection Limit (MDL) that can be reproduced in a manner that results in a 99% confidence level and is both accurate and precise (based on Laboratory's Blank (QA/QC).

-- = No analyses - no groundwater sample was available

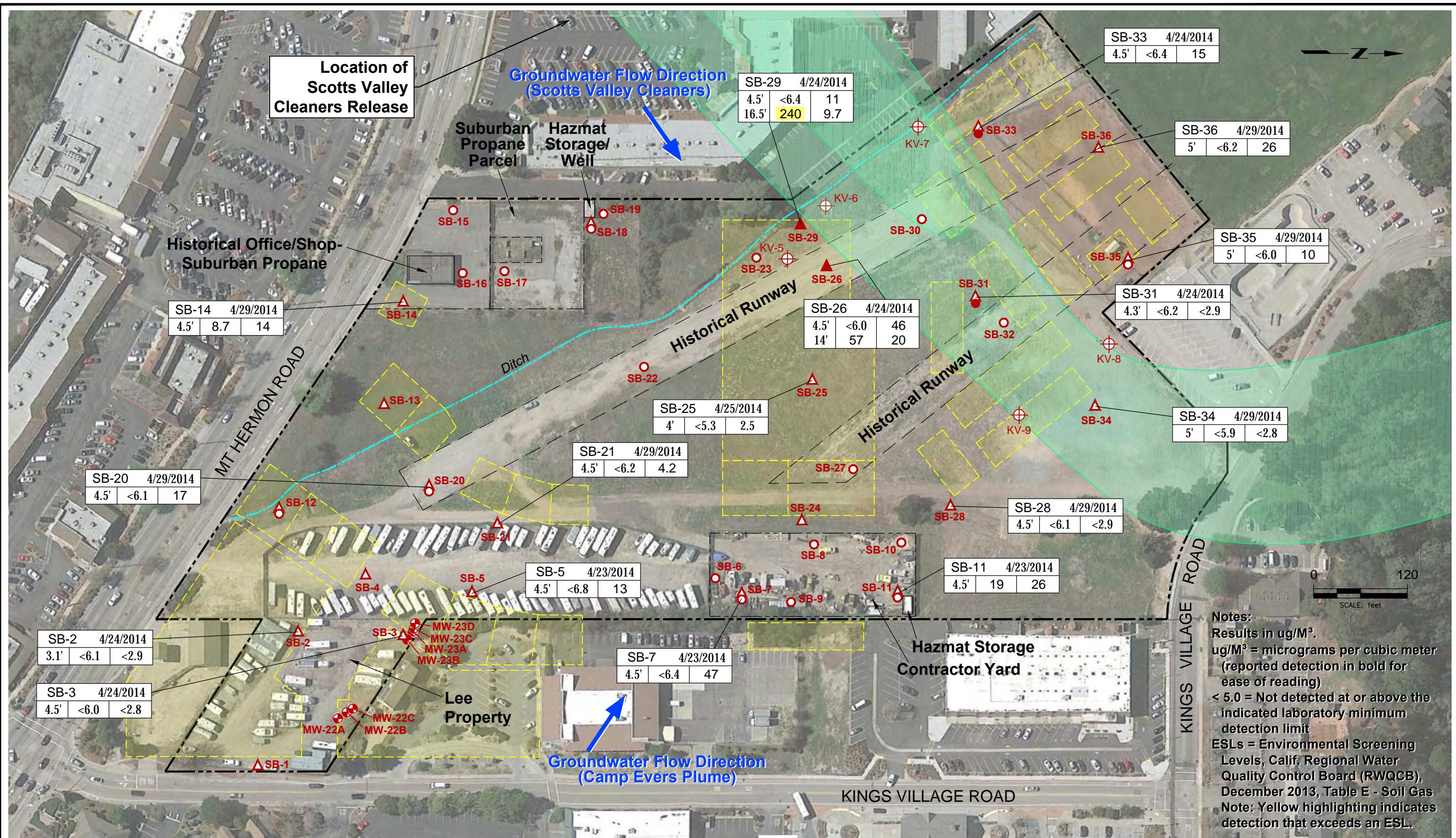
MDL = **Method Detection Limit** - The minimum concentration of a substance that can be measured and reported with a 99% confidence that the analyte concentration is greater than zero.

J = This "J-Flag" is a lab-reported value that is detected at a concentration that is below the laboratory's RDL but above the MDL - the detection is considered an accurate detection of the compound, but it is an estimated value.

Attachment 5

Extent of Soil Vapor Contamination

Before Cleanup


(First Round of Soil Vapor Sampling)

- Figure: Soil Vapor PCE Analytical Results – (April 2014)
- Table 3: Summary of Soil Vapor Analytical Results – VOCs (April 2014)

After Cleanup

(Second Round of Soil Vapor Sampling)

- Figure 5: Site Map with Soil Vapor Results – (May & November 2021)
- Table 5: Soil Vapor Sampling Results – VOCs (May & November 2021)

Legend:
- - - Project Boundary

Proposed Development (HKIT Architects, March 2014)

Soil Vapor Boring - approx. 5' bgs
Soil Vapor Boring - approx. 5' and 15' bgs
Soil Sampling Only

Soil and Grab Groundwater Boring
Existing Monitoring Well (Watkins-Johnson Investigation)
Existing Monitoring Well (Lee Property) - Camp Evers Plume

Key:

SB-11 4/23/2014

Sampling Date

Benzene Concentration in Soil Vapor

PCE (Tetrachloroethene) Concentration in Soil Vapor

Sample Depth (feet)

PCE in Groundwater >5 $\mu\text{g}/\text{L}$

(Source: ARCADIS - Watkins-Johnson Investigation, Figure 4)

SOIL VAPOR PCE ANALYTICAL RESULTS

SCOTTS VALLEY PARCEL GROUP
SCOTTS VALLEY, CALIFORNIA

Project No. 33114-014014.01

Figure

4

05/29/14
SITE0514.DWG

TABLE 3
Summary of Soil Vapor Analytical Results - VOCs
 Limited Site Investigation
 TO-15 analysis
 Scotts Valley Parcels, CA

Sample ID	Sample Depth (feet, bgs)	Sample Date	VOCs Units: ug/M ³																
			Acetone	Benzene	1,3-Butadiene	2-Butanone (MEK)	Carbon Disulfide	Chloroform	Cyclohexane	Freon 113	n-Heptane	n-Hexane	Isopropanol - IPA	4-Methyl-2-Pentanone	Toluene	m,p-Xylene	1,1-Dichloroethane (DCA)	Tetrachloroethene (PCE)	Other VOCs
SB-2V	3.1	4/24/2014	22	<2.9	3.6	6.1	14	<4.4	53	<6.9	<3.7	4.4	<22	<3.7	<3.4	<3.9	<3.7	<6.1	ND
SB-3V	5	4/24/2014	130	<2.8	<2.0	8.7	4.7	<4.3	37	<6.8	<3.6	<3.1	<22	<3.6	<3.4	<3.9	<3.6	<6.0	ND
SB-5V	5	Suburban Parcel Vapor Test			18	11	<4.9	80	<7.7	11	26	<25	<4.1	13	<4.3	<4.0	<6.8	ND	
SB-7V	5	4/23/2014	290	47	<2.1	64	19	<4.6	44	<7.2	45	89	<23	<3.9	17	5.4	24	<6.4	ND
SB-11V	5	4/23/2014	200	26	33	75	68	<4.3	16	<6.8	18	52	<22	<3.6	12	<3.8	<3.6	19	ND
SB-14V	5	4/29/2014	43	14	9.7	14	9.6	<4.2	4.1	<6.6	4.6	38	<21	<3.5	8.3	5.3	<3.5	8.7	ND
SB-20V	5	4/29/2014	56	17	30	22	8.8	<4.4	7.0	<6.9	9.4	53	<22	<3.7	9.9	<3.9	<3.6	<6.1	ND
SB-21V	5	4/29/2014	<8.7	4.2	4.3	3.7	3.8	<4.5	<3.1	<7.0	<3.7	<3.2	<22	<3.7	<3.4	<4.0	<3.7	<6.2	ND
SB-25V	4.0	4/25/2014	130	2.5	<1.7	21	<2.4	<3.8	<2.7	<5.9	<3.2	<2.7	<19	<3.2	<2.9	<3.4	<3.1	<5.3	ND
SB-26V	5	4/24/2014	270	46	<2.0	62	22	<4.3	7.4	<6.8	14	33	30	<3.6	30	5.0	<3.6	<6.0	ND
SB-26V-A	14.0	4/24/2014	76	20	<2.1	28	12	<4.6	91	110	16	36	<23	4.0	21	4.5	<3.8	57	ND
SB-28V	5	4/29/2014	<8.5	<2.9	3.4	4.0	<2.8	<4.4	<3.1	<6.9	<3.7	<3.2	<22	<3.7	<3.4	<3.9	<3.6	<6.1	ND
SB-29V	5	4/24/2014	46	11	17	12	4.0	<4.6	25	<7.2	<3.9	3.6	<23	<3.9	7.6	<4.1	<3.8	<6.4	ND
SB-29V-A	16.5	4/24/2014	22	9.7	30	11	4.4	<4.3	<3.0	240	7.0	15	<22	<3.6	10	<3.8	<3.8	240	ND
SB-31V	4.3	4/24/2014	29	<2.9	13	25	3.0	5.0	5.2	<7.0	<3.7	3.8	<22	<3.7	4.2	<4.0	<3.7	<6.2	ND

TABLE 3
Summary of Soil Vapor Analytical Results - VOCs
 Limited Site Investigation
 TO-15 analysis
 Scotts Valley Parcels, CA

Sample ID	Sample Depth (feet, bgs)	Sample Date	VOCs Units: ug/M ³																
			Acetone	Benzene	1,3-Butadiene	2-Butanone (MEK)	Carbon Disulfide	Chloroform	Cyclohexane	Freon 113	n-Heptane	n-Hexane	Isopropanol - IPA	4-Methyl-2-Pentanone	Toluene	m,p-Xylene	1,1-Dichloroethane (DCA)	Tetrachloroethene (PCE)	Other VOCs
SB-33V	4.5	4/24/2014	200	15	31	64	5.0	<4.6	4.0	<7.2	<3.9	6.7	<23	<3.9	9.9	<4.1	<3.8	<6.4	ND
SB-34V	5	4/29/2014	17	<2.8	4.3	7.7	<2.7	<4.3	<3.0	<6.7	<3.6	<3.1	<22	<3.6	<3.3	<3.8	<3.5	<5.9	ND
SB-35V	5	4/29/2014	37	10	9.6	13	3.0	<4.3	<3.0	<6.7	<3.6	3.6	<22	<3.6	7.0	<3.8	<3.6	<6.0	ND
SB-36V	5	4/29/2014	81	26	<2.0	35	35	<4.5	16	<7.0	27	61	<22	<3.7	86	<4.0	<3.7	<6.2	ND
ESL-Table 2, Residential			1.6E+07	42	--	2.6E+06	--	230	--	--	--	--	--	--	160,000	54,000 t	760	210	Varies
ESL-Table E-3, Commercial			1.4E+08	420	--	2.2E+07	--	2,300	--	--	--	--	--	--	1.3+E06	440,000 t	7,700	2,100	Varies
US E.P.A. Commercial SL			1.4E+06	16	4.1	220,000	31,000	5.3	260,000	--	--	31,000	--	--	220,000	4,400	77	470/20.8**	Varies

Notes:

ID = Identification, which includes boring ID

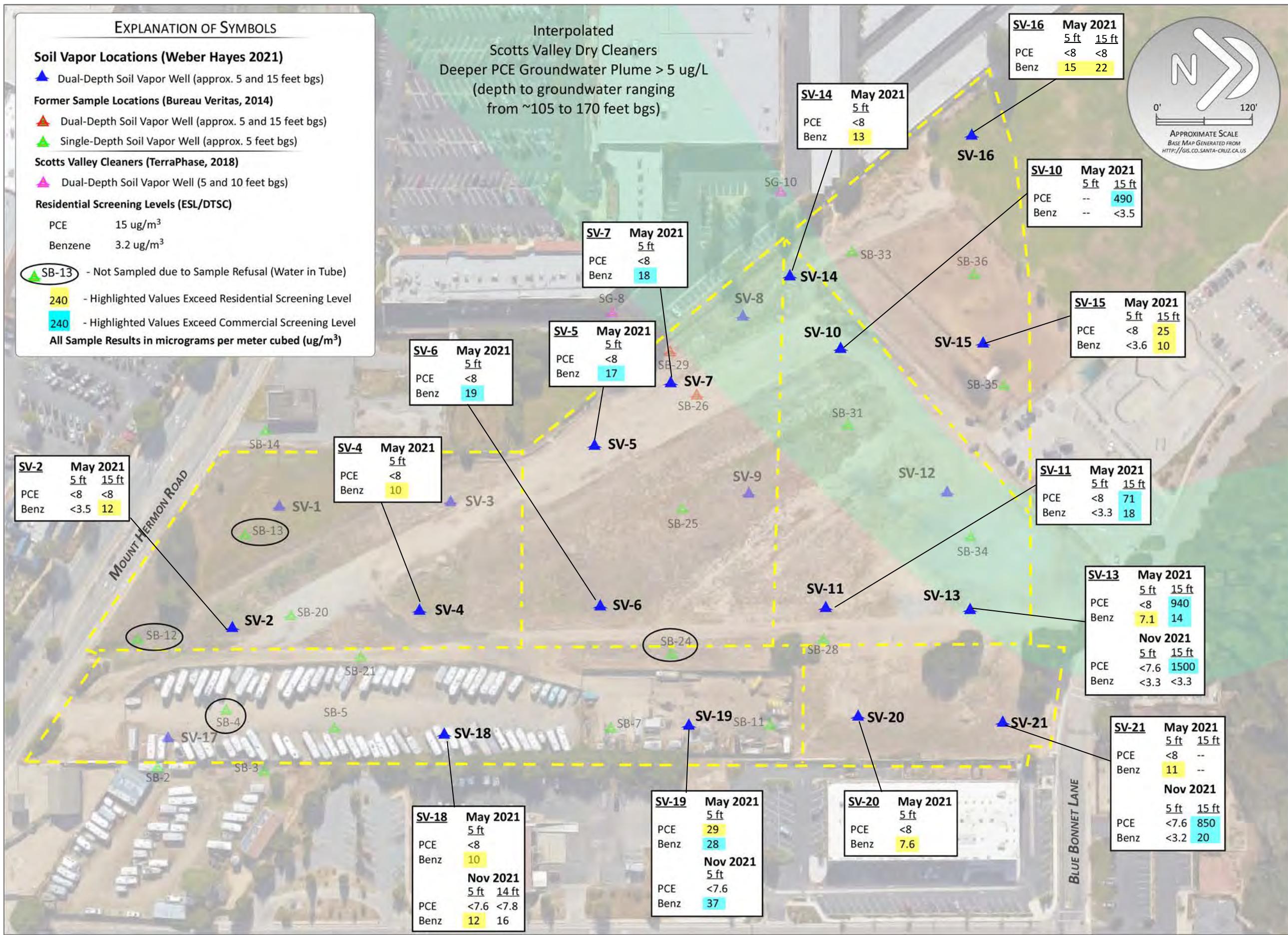
t = total isomers **=Cal Mod

VOCs = Volatile organic compounds (Analytical Method TO-15)

ug/M³ = Soil vapor results in micrograms per cubic meter (reported detection in bold for ease of reading)

< 5.0 = Not detected at or above the indicated laboratory minimum detection limit

t = Value set for total xylenes: m-, o-, and p- isomers


NA = Not analyzed

ESLs = Environmental Screening Levels, Calif. Regional Water Quality Control Board (RWQCB), December 2013, Table E-2 - Soil Gas

SL = USEPA Vapor Intrusion Screening Level (VISL) Calculator, User's Guide, 12-2013, Commercial SL based on indoor air exposure level for compound of concern

soil gas attenuation by intrusion x 0.1 (highlighted in yellow where the VISL is exceeded)

-- = Not established for the indicated analyte

FIGURE 5
Project 2X975

SITE MAP WITH SOIL VAPOR RESULTS MAY AND NOVEMBER 2021

SITE: TOWN CENTER PROJECT AREA
ADDRESS: FORMER AIRPORT, SCOTTS VALLEY, CA

DATE: FEBRUARY 2022

FILE: 2x975_S-Cruz parcels in Scotts Valley(Figures)

WEBER, HAYES & ASSOCIATES
Hydrogeology and Environmental Engineering
120 Westgate Drive, Watsonville, CA
831.722.3580 / www.weber-hayes.com

Table 5
Soil Vapor Sampling Results
 (Volatile Organic Compounds Analytical)
 Former Skypark Airport, Scotts Valley
 All soil vapor results are in micrograms per meter cubed ($\mu\text{g}/\text{m}^3$)

Sample Information			Volatile Organic Compounds (VOCs) (by Laboratory Analysis by EPA Method TO-15)									Field Leak Check Monitoring (Isopropyl Alcohol)				
Investigation Date	Sample ID	Depth (in feet below ground surface)	Total Petroleum Hydrocarbons (TPH) as Gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene	PCE	Other VOCs	Field Shroud Concentration (avg, in ppm)	Laboratory Results (in $\mu\text{g}/\text{m}^3$)	Calculated Leakage (percent, %)			
May 17, 2021 to May 20, 2021	SV-1	5	< 3,200	< 3.2 [▲]	6.9 J	< 4.9 [▲]	11 J	< 21 [▲]	< 7.6 [▲]	Acetone = 100, Carbon Disulfide = 6.2 Chloroform = 110 Methyl ethyl ketone = 22 Propylene = 240	66.6	68	0.04			
		15	< 3,100	< 3.3 [▲]	< 31	< 5 [▲]	< 160	< 22 [▲]	< 7.8 [▲]	Acetone = 180, Carbon Disulfide = 440 n-Heptane = 16 Methyl ethyl ketone = 24 Propylene = 450	73	66	0.04			
	SV-1	5	Soils Saturated - No Vapor Probe Installed									NA				
		15	Soils Saturated - No Vapor Probe Installed									NA				
May 17, 2021 to May 20, 2021	SV-2	5	< 3,300	< 3.5 [▲]	< 33	< 5.3 [▲]	< 160	< 23 [▲]	< 8.2 [▲]	Acetone = 130 Methyl ethyl ketone = 25 Propylene = 83	232.1	< 5.3	0.001			
		15	< 3,300	12 J	12 J	< 5.2 [▲]	< 160	< 23 [▲]	< 8.2 [▲]	Acetone = 96 Carbon Disulfide = 7.2 Methyl ethyl ketone = 24 Propylene = 850	41	140	0.14			
	Dup-C	5	< 3,400	5.4 J	< 34	< 5.4 [▲]	< 170	< 24 [▲]	< 8.4 [▲]	Acetone = 120 Methyl ethyl ketone = 27 Propylene 92	197.9	59	0.01			
	SV-2	5	Soils Saturated - No Vapor Probe Installed									NA				
		15	Soils Saturated - No Vapor Probe Installed									NA				
May 17, 2021 to May 20, 2021	SV-3	5	< 3,200	< 3.4 [▲]	< 32	< 5.1 [▲]	< 160	< 22 [▲]	< 8 [▲]	Acetone = 78 Propylene = 34 Methyl ethyl ketone = 16	83.7	13	0.01			
		15	440 J	< 3.3 [▲]	< 32	< 5.1 [▲]	< 160	< 22 [▲]	< 8 [▲]	Acetone = 56 Propylene = 630	85	24	0.01			
	SV-3	5	Soils Saturated - No Vapor Probe Installed									NA				
		15	Soils Saturated - No Vapor Probe Installed									NA				
May 17, 2021 to May 20, 2021	SV-4	5	< 3,400	10 J	< 34	< 5.4 [▲]	< 170	< 24 [▲]	< 8.5 [▲]	Acetone = 79 Propylene = 250	61.2	58	0.04			
		15	Soils Saturated - No Vapor Probe Installed									NA				
	SV-4	5	Soils Saturated - No Vapor Probe Installed									NA				
		15	Soils Saturated - No Vapor Probe Installed									NA				
May 17, 2021 to May 20, 2021	SV-5	4	1,300 J	17 J	20	< 5.1 [▲]	< 160	< 22 [▲]	< 7.9 [▲]	Acetone = 220 Methyl ethyl ketone = 70 Propylene = 290	137.5	19	0.01			
		15	Soils Saturated - No Vapor Probe Installed									NA				
	SV-5	5	No Sample Collected - No Flow Conditions									NA				
		15	Soils Saturated - No Vapor Probe Installed									NA				
Environmental Screening Levels ⁽¹⁾ Residential / Commercial Land Use (0.03 ATTENUATION FACTOR)			20,000	83,000	3.2	14	10,000	44,000	37	160	3,500	15,000	2.8	12	15 67	
California DTSC-Modified Soil Gas Levels ⁽²⁾ Residential / Commercial Land Use (ATTENUATION FACTOR: 0.03)			Not Established		3.2	14	10,333	43,333	37	163	3,333	14,666	2.8	12	15.3 67	

Table 5
Soil Vapor Sampling Results
 (Volatile Organic Compounds Analytical)
 Former Skypark Airport, Scotts Valley
 All soil vapor results are in micrograms per meter cubed ($\mu\text{g}/\text{m}^3$)

Sample Information			Volatile Organic Compounds (VOCs) (by Laboratory Analysis by EPA Method TO-15)								Field Leak Check Monitoring (Isopropyl Alcohol)							
Investigation Date	Sample ID	Depth (in feet below ground surface)	Total Petroleum Hydrocarbons (TPH) as Gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene	PCE	Other VOCs	Field Shroud Concentration (avg., in ppm)	Laboratory Results (in $\mu\text{g}/\text{m}^3$)	Calculated Leakage (percent, %)					
May 17, 2021 to May 20, 2021	SV-6	5	610 J	19 J	< 33	< 5.3 ^	< 170	< 23 ^	< 8.3 ^	Acetone = 46 Propylene = 110	81	< 33	0.02					
		15			Soils Saturated - No Vapor Probe Installed								NA					
		5			Soils Saturated - No Vapor Probe Installed								NA					
		15			Soils Saturated - No Vapor Probe Installed								NA					
May 17, 2021 to May 20, 2021	SV-7	4	680 J	18 J	< 32	< 5.1 ^	< 160	< 22 ^	< 8 ^	Acetone = 35 Propylene = 82 1,1,2-Trichloro-1,2,2-trifluoroethane = 35	226	5900	1.06					
		15			Soils Saturated - No Vapor Probe Installed								NA					
		5			Soils Saturated - No Vapor Probe Installed								NA					
		15			Soils Saturated - No Vapor Probe Installed								NA					
May 17, 2021 to May 20, 2021	SV-8	3	390 J	< 3.6 ^	< 35	< 5.5 ^	< 170	< 24 ^	< 8.6 ^	Acetone = 12 Ethanol = 28	150.7	15	0.004					
		15			Soils Saturated - No Vapor Probe Installed								NA					
		Dup-A	3	470 J	< 3.5 ^	< 34	< 5.4 ^	< 170	< 24 ^	< 8.4 ^	Acetone = 15 Ethanol = 29 Propylene = 6.0	29	16	0.022				
		SV-8	5		Soils Saturated - No Vapor Probe Installed								NA					
November 17, 2021 to November 18, 2021			15		Soils Saturated - No Vapor Probe Installed								NA					
SV-9	3	570 J	< 3.3 ^	11 J	< 5.1 ^	< 160	< 22 ^	< 8 ^	Acetone = 39 Propylene = 17	66	< 32	0.02						
	15			Soils Saturated - No Vapor Probe Installed								NA						
	5			Soils Saturated - No Vapor Probe Installed								NA						
	15			Soils Saturated - No Vapor Probe Installed								NA						
May 17, 2021 to May 20, 2021	SV-10	5		No Sample Collected - No Flow Conditions								NA						
		15	1,100 J	< 3.5 ^	10 J	< 5.3 ^	< 170	< 23 ^	490	Acetone = 43 Propylene = 260 1,1,2-Trichloro-1,2,2-trifluoroethane = 130	79	< 33	0.02					
		5			Soils Saturated - No Vapor Probe Installed								NA					
		15			Soils Saturated - No Vapor Probe Installed								NA					
November 17, 2021 to November 18, 2021	SV-11	5	950 J	< 3.3 ^	16 J	< 5.1 ^	23 J	< 22 ^	< 8 ^	Acetone = 49 Chloroform = 12	184	< 32	0.01					
		15	1,600 J	18 J	36	< 5.2 ^	15 J	< 23 ^	71 J	n-Hexane = 10, Propylene = 1,400 1,1,2-Trichloro-1,2,2-trifluoroethane = 78	256.2	270	0.04					
		5	1100 J	< 3.4 ^	< 32	< 5.2 ^	< 160	< 23 ^	< 8.1 ^	Acetone = 62, t-Butyl alcohol = 37 Carbon disulfide = 80, Ethanol = 81 Propylene = 170, Tetrahydrofuran = 68	127.5	170	0.05					
		15			Soils Saturated - No Vapor Probe Installed								NA					
Environmental Screening Levels ⁽¹⁾ Residential / Commercial Land Use (0.03 ATTENUATION FACTOR)			20,000	83,000	3.2	14	10,000	44,000	37	160	3,500	15,000	2.8	12	15	67	Acetone = 1,100,000 / 4,500,000 Methyl Ethyl Ketone = 170,000 / 730,000 Chloroform = 4.1 / 18 All Others = Not Established	
California DTSC-Modified Soil Gas Levels ⁽²⁾ Residential / Commercial Land Use (ATTENUATION FACTOR: 0.03)			Not Established		3.2	14	10,333	43,333	37	163	3,333	14,666	2.8	12	15.3	67	Acetone = 1,100,000 / 4,500,000 Methyl Ethyl Ketone = 173,333 / 733,333 All Others = Not Established	

Table 5
Soil Vapor Sampling Results
 (Volatile Organic Compounds Analytical)
 Former Skypark Airport, Scotts Valley
 All soil vapor results are in micrograms per meter cubed ($\mu\text{g}/\text{m}^3$)

Sample Information			Volatile Organic Compounds (VOCs) (by Laboratory Analysis by EPA Method TO-15)								Field Leak Check Monitoring (Isopropyl Alcohol)						
Investigation Date	Sample ID	Depth (in feet below ground surface)	Total Petroleum Hydrocarbons (TPH) as Gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene	PCE	Other VOCs	Field Shroud Concentration (avg, in ppm)	Laboratory Results (in $\mu\text{g}/\text{m}^3$)	Calculated Leakage (percent, %)				
May 17, 2021 to May 20, 2021	SV-12	5	< 3,100	< 3.3 [▲]	< 31	< 5 [▲]	< 160	< 22 [▲]	< 7.8 [▲]	Acetone = 69 Propylene = 61	118.7	< 31	0.01				
		15											NA				
		5	750	< 3.5 [▲]	< 33	< 5.3 [▲]	< 170	< 23 [▲]	< 8.4 [▲]	Acetone = 12 Propylene = 72	124.1	15	0.005				
		15											NA				
May 17, 2021 to May 20, 2021	SV-13	5	3,500	7.1 J	< 32	31 J	120 J	< 22 [▲]	< 8 [▲]	Acetone = 75 Propylene = 190	52.5	< 32	0.02				
		15	2,000 J	14 J	21 J	< 5 [▲]	< 160	< 22 [▲]	940	n-Heptane = 7.7 Propylene = 1,000 1,1,2-Trichloro-trifluoroethane = 320	49.5	< 31	0.03				
		5	1,600 J	< 3.3 [▲]	< 30	< 4.8 [▲]	< 150	< 21 [▲]	< 7.6 [▲]	Acetone = 88 Chloroform = 63 Propylene = 67	70	14	0.01				
		15	2,600 J	< 3.3 [▲]	< 31	< 5 [▲]	< 160	< 22 [▲]	1500	Acetone = 30 Propylene = 140 1,1,2-Trichloro-1,2,2-trifluoroethane = 550	106.25	73	0.03				
May 17, 2021 to May 20, 2021	SV-14	3	460 J	13 J	< 33	< 5.3 [▲]	< 170	< 23 [▲]	< 8.3 [▲]	Acetone = 45 Propylene = 76	356.2	< 33	0.004				
		15											NA				
		5											NA				
		15											NA				
May 17, 2021 to May 20, 2021	SV-15	5	2,400 J	< 3.6 [▲]	< 34	12 J	49 J	< 24 [▲]	< 8.5 [▲]	Acetone = 240, Carbon Disulfide = 23 Chloroform = 20 Methyl ethyl ketone = 47, Propylene = 440	42.8	< 34	0.03				
		15	690 J	10 J	19 J	12 J	< 160	< 23 [▲]	25 J	Acetone = 80 1,1,2-Trichloro-1,2,2-trifluoroethane = 65	81.2	< 33	0.02				
		Dup-B	5	2,400 J	< 3.5 [▲]	< 34	11 J	46 J	< 24 [▲]	Acetone = 230, Carbon disulfide = 23, Chloroform = 19 Ethylbenzene = 11, Methyl ethyl ketone = 44 Propylene = 440p & m-Xylenes = 37, o-Xylene = 9.5	37.9	< 34	0.04				
		SV-15	5	1800 J	< 3.1 [▲]	440	< 4.8 [▲]	< 150	< 21 [▲]	< 7.4 [▲]	Acetone = 99, Carbon disulfide = 10 Chloroform = 52 Methyl ethyl ketone = 18, Propylene = 120	315	12	0.002			
			15										NA				
May 17, 2021 to May 20, 2021	SV-16	5	2,900 J	15 J	< 31	< 4.9 [▲]	20 J	< 21 [▲]	< 7.6 [▲]	Acetone = 800, Carbon Disulfide = 26 Chloroform = 25, n-Heptane = 8.8 Methyl ethyl ketone = 97, Propylene = 350	281.2	< 31	0.004				
		15	970 J	22 J	27 J	< 5.3 [▲]	11 J	< 23 [▲]	< 8.3 [▲]	Acetone = 120, Methyl ethyl ketone = 34 Methyl iodide = 20 Propylene = 2,000	35.4	< 33	0.04				
		5											NA				
		15											NA				
May 17, 2021 to May 20, 2021	SV-17	3	< 3,200	< 3.4 [▲]	< 32	< 5.2 [▲]	< 160	< 23 [▲]	< 8 [▲]	Acetone = 840 Chloroform = 61 Propylene = 38	46	82	0.07				
		13	< 3,200	< 3.3 [▲]	6.6 J	< 5.1 [▲]	11 J	< 22 [▲]	< 8 [▲]	Acetone = 170 Carbon Disulfide = 8.9 1,2,4-Trimethylbenzene = 13	75	64	0.03				
		5											NA				
		15											NA				
Environmental Screening Levels ⁽¹⁾ Residential / Commercial Land Use (0.03 ATTENUATION FACTOR)			20,000	83,000	3.2	14	10,000	44,000	37	160	3,500	15,000	2.8	12	15 67	Acetone = 1,100,000 / 4,500,000 Methyl Ethyl Ketone = 170,000 / 230,000 Chloroform = 4.1 / 18 All Others = Not Established	
California DTSC-Modified Soil Gas Levels ⁽²⁾ Residential / Commercial Land Use (ATTENUATION FACTOR: 0.03)			Not Established		3.2	14	10,333	43,333	37	163	3,333	14,666	2.8	12	15.3 67	Acetone = 1,100,000 / 4,500,000 Methyl Ethyl Ketone = 173,333 / 233,333 All Others = Not Established	

Table 5
Soil Vapor Sampling Results
 (Volatile Organic Compounds Analytical)
 Former Skypark Airport, Scotts Valley
 All soil vapor results are in micrograms per meter cubed ($\mu\text{g}/\text{m}^3$)

Sample Information			Volatile Organic Compounds (VOCs) (by Laboratory Analysis by EPA Method TO-15)								Field Leak Check Monitoring (Isopropyl Alcohol)						
Investigation Date	Sample ID	Depth (in feet below ground surface)	Total Petroleum Hydrocarbons (TPH) as Gasoline	Benzene	Toluene	Ethylbenzene	Xylenes	Naphthalene	PCE	Other VOCs	Field Shroud Concentration (avg, in ppm)	Laboratory Results (in $\mu\text{g}/\text{m}^3$)	Calculated Leakage (percent, %)				
May 17, 2021 to May 20, 2021	SV-18	5	< 3,200	10 J	7.9 J	< 5.2 [▲]	< 160	< 23 [▲]	< 8 [▲]	Acetone = 110 Carbon Disulfide = 5.5 Propylene = 520	32.5	54	0.07				
		15	Soils Saturated - No Vapor Probe Installed								NA						
	November 17, 2021 to November 18, 2021	5	2700 J	12 J	33	< 4.9 [▲]	20 J	< 21 [▲]	< 7.6 [▲]	Acetone = 140, Bromodichloromethane = 31 Chloroform = 100, Cyclohexane = 100, Ethanol = 110 Methyl Isobutyl Ketone = 55, Propylene = 55, p- & m-Xylenes = 20	165	20	0.005				
		14	3400	16 J	36	< 5.0 [▲]	24 J	< 22 [▲]	< 7.8 [▲]	Acetone = 150, Cyclohexane = 300, Ethanol = 62, n-Heptane = 13 Isooctane = 18, Methyl ethyl ketone = 30 Methyl isobutyl ketone = 50, Propylene = 620	343.75	56	0.007				
May 17, 2021 to May 20, 2021	SV-19	5	5,400	28 J	11 J	< 5.3 [▲]	< 160	< 23 [▲]	29	Acetone = 140, Carbon disulfide = 23 n-Heptane = 23	45	69	0.06				
		15	Soils Saturated - No Vapor Probe Installed								NA						
	November 17, 2021 to November 18, 2021	5	3200	37	19	< 4.9 [▲]	< 150	< 21 [▲]	< 7.6 [▲]	Acetone = 570, Carbon disulfide = 24 Cyclohexane = 300, Ethanol = 32 n-Heptane = 17, Methyl ethyl ketone = 110, Propylene = 720	121.3	52	0.02				
		15	Soils Saturated - No Vapor Probe Installed								NA						
May 17, 2021 to May 20, 2021	Dup-A	5	3400	36	18 J	< 4.9 [▲]	< 150	< 21 [▲]	< 7.6 [▲]	Acetone = 560, Carbon disulfide = 24 Cyclohexane = 300, Ethanol = 25 n-Heptane = 18, Methyl ethyl ketone = 110, Propylene = 710	121.3	51	0.02				
	SV-20	5	< 3,400	7.6 J	8.3 J	< 5.4 [▲]	< 170	< 24 [▲]	< 8.4 [▲]	Acetone = 44 Propylene = 98	36.2	< 34	0.04				
		15	Soils Saturated - No Vapor Probe Installed								NA						
	November 17, 2021 to November 18, 2021	5	1100 J	< 3.2 [▲]	< 30	< 4.7 [▲]	< 150	< 21 [▲]	< 7.4 [▲]	Acetone = 12 Propylene = 77	143.75	10	0.003				
		15	Soils Saturated - No Vapor Probe Installed								NA						
May 17, 2021 to May 20, 2021	SV-21	5	4,600	11 J	< 34	14 J	53 J	< 24 [▲]	< 8.6 [▲]	Acetone = 450, Carbon Disulfide = 9.6 n-Heptane = 9.8, Methyl ethyl ketone = 70 Propylene = 430	47	< 34	0.03				
		15	No Sample Collected - No Flow Conditions								NA						
	November 17, 2021 to November 18, 2021	5	2,400 J	< 3.2 [▲]	< 30	< 4.8 [▲]	< 150	< 21 [▲]	< 7.6 [▲]	Carbon disulfide = 14, Chloroform = 33 n-Heptane = 23, Hexane = 45 Propylene = 200	145	9	0.003				
		15	3,700	20 J	26 J	< 5.1 [▲]	< 160	< 22 [▲]	850	Acetone = 52, n-Heptane = 16 Propylene = 890, Styrene = 18 1,1,2-Trichloro-1-(2,2,2-trifluoroethyl)ethane = 890	125	< 32	0.01				
Environmental Screening Levels ^[1] Residential / Commercial Land Use (0.03 ATTENUATION FACTOR)			20,000	83,000	3.2	14	10,000	44,000	37	160	3,500	15,000	2.8	12	15 67	Acetone = 1,100,000 / 4,500,000 Methyl Ethyl Ketone = 170,000 / 730,000 Chloroform = 4.1 / 18 All Others = Not Established	
California DTSC-Modified Soil Gas Levels ^[2] Residential / Commercial Land Use (ATTENUATION FACTOR: 0.03)			Not Established		3.2	14	10,333	43,333	37	163	3,333	14,666	2.8	12	15.3 67	Acetone = 1,100,000 / 4,500,000 Methyl Ethyl Ketone = 173,333 / 733,333 All Others = Not Established	

Notes

1 = Environmental Screening Levels (ESLs): from User's Guide: Screening for Environmental Concerns at Sites With Contaminated Soil and Groundwater, set by the San Francisco Bay Regional Water Quality Control Board (Interim Final, Jan 2019) <[https://www.waterboards.ca.gov/sanfranciscobay/water_issues/programs/ESL/ESL_Workbook_Interim%20Final_24Jan19_Rev1%20\(1\).xlsx](https://www.waterboards.ca.gov/sanfranciscobay/water_issues/programs/ESL/ESL_Workbook_Interim%20Final_24Jan19_Rev1%20(1).xlsx)>. The ESLs are intended to provide quantitative risk-based guidance on whether further assessment or remediation of contamination is warranted. The ESLs used in this table were obtained from the above referenced document, "Tier 1 ESLs", based on shallow soils (<3m), groundwater is a current or potential source of drinking water.

2 = CA DTSC Modified Air Screening Levels: From the California Department of Toxic Substances Control (DTSC), Office of Human and Ecological Risk (HERO), Human Health Risk Assessment (HHRA) Note Number 3, Table 3, June 2020. <<https://dtsc.ca.gov/wp-content/uploads/sites/31/2019/04/HHRA-Note-3-June-2020-A.pdf>>

US EPA Region 9's Regional Screening Levels (RSLS): From US EPA Regional Screening Levels for Indoor Air (<https://www.epa.gov/risk/region-9-screening-levels>).

The Indoor Air RSLS are divided by the US EPA's Recommended Vapor Attenuation Factor (0.03) (from the US EPA's Recommended Vapor Attenuation Factor for Risk Based Screening of sub-slab soil gas [Table 6-1 in Final Guidance for Assessing and Mitigating the Vapor Intrusion Pathway From Subsurface Sources to Indoor Air, May 2020]) to calculate the Risk Level concentration appropriate for the specific sample collected (i.e., Sub-slab soil gas, "Near-source" exterior soil gas, Crawl space air, etc.).

PCE = Tetrachloroethene

-- = Sample was not analyzed for this constituent

BOLD = Compound detected.

< X = Constituent not detected above laboratory's Method Detection Limit (MDL), X.

[▲] = Laboratory note: Estimated value between the laboratory method detection limit and PQL.

[◆] = Laboratory Method Detection Limit (MDL) was used due to the PQL being higher than an established screening level

BOLD = Analytical result exceeds Commercial US EPA RSL, CA DTSC or ESL threshold.

BOLD = Analytical result exceeds Residential US EPA RSL, CA DTSC or ESL threshold.

NEWSLETTER

SCOTTS VALLEY
WATER DISTRICT

HIGHLIGHTS

SVWD Crews Respond to
Leaks, Water Main
Breaks

CIP Update: Tanks
Resealing Project

Rainfall Levels

Water Efficiency Tips for
the New Year

Quick work by District Operations Team

Big round of applause to the Operations Team at the Scotts Valley Water District, which quickly responded to leaks and water main breaks this month.

Staff expertly handled a water main break at Scotts Valley Drive and Granite Creek Road as well as a water main leak on Lucinda Street and Green Valley Road.

Make sure to follow District's [Facebook](#) and [Instagram](#) pages for key updates and news.

Glenwood and Southwood Tanks Resealing Project to finish this month

Work is wrapping up on the Glenwood and Southwood Tanks Resealing Project, which extends the life of the two storage tanks by resealing the seams. Both tanks are approximately 25 years old and are beginning to show signs of wear along the seam panels.

The Glenwood Tank has a capacity of 1 million gallons, and the Southwood Tank can store up to 400,000 gallons. Both are key pieces of the overall water infrastructure needed to deliver water to District customers.

[**Learn more**](#) about this project, see updates and read about other District projects.

Weather update: Rainfall at 50% of annual average for Water Year

It's been a wet season so far! The District has recorded 20.24 inches of rain at the El Pueblo Weather Station. That amounts to half of the average historical rainfall measured in Scotts Valley so far this water year.

The current water year started in Oct. 1, 2025 and runs through Sept. 30, 2026. By measuring the rainfall, the District can better understand rainfall patterns and impacts to groundwater levels.

[**Learn more**](#) about rainfall levels and the District's role in ensuring a sustainable water supply for decades to come.

Water-saving resolutions for the new year

When customers are efficient and mindful of water-use habits, they save on their monthly water bill.

Here are three tips to be more water-efficient in the new year:

- **Switch water aerators:** With a quick switch of water aerators in a bathroom sink, you can save more than a half-gallon of water each minute.

- Use the dishwasher: Modern dishwashers that are energy-efficient use less than 3.2 gallons of water per load! Skip the sink and use the dishwasher.
- **Monitor WaterSmart:** All District customers can see how much water they use each month on the WaterSmart platform. Learn how to access the platform on the [District's website](#).

Get regular tips on water efficiency throughout the year by following the District on [Facebook](#) and [Instagram](#).

**SCOTTS VALLEY
WATER DISTRICT**

svwd.org

[View email in browser](#)

[update your preferences](#) or [unsubscribe](#)